Table of Contents Author Guidelines Submit a Manuscript
Journal of Medical Engineering
Volume 2013 (2013), Article ID 265412, 9 pages
Research Article

Micromotion of Dental Implants: Basic Mechanical Considerations

1Department of Mechanical Engineering, University of Erlangen-Nuremberg, Egerlandstraße 5, 91058 Erlangen, Germany
2Department of Prosthodontics, University of Erlangen-Nuremberg, Glueckstraße 11, 91054 Erlangen, Germany

Received 13 August 2012; Accepted 23 September 2012

Academic Editor: Raju Adhikari

Copyright © 2013 Werner Winter et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Micromotion of dental implants may interfere with the process of osseointegration. Using three different types of virtual biomechanical models, varying contact types between implant and bone were simulated, and implant deformation, bone deformation, and stress at the implant-bone interface were recorded under an axial load of 200 N, which reflects a common biting force. Without friction between implant and bone, a symmetric loading situation of the bone with maximum loading and displacement at the apex of the implant was recorded. The addition of threads led to a decrease in loading and displacement at the apical part, but loading and displacement were also observed at the vertical walls of the implants. Introducing friction between implant and bone decreased global displacement. In a force fit situation, load transfer predominantly occurred in the cervical area of the implant. For freshly inserted implants, micromotion was constant along the vertical walls of the implant, whereas, for osseointegrated implants, the distribution of micromotion depended on the location. In the cervical aspect some minor micromotion in the range of 0.75 μm could be found, while at the most apical part almost no relative displacement between implant and bone occurred.