Review Article

Optical Coherence Tomography: Basic Concepts and Applications in Neuroscience Research

Figure 8

In vivo brain cancer imaging in a mouse with patient-derived high-grade brain cancer (GBM272). (a and b) Brain tissues were imaged in vivo in mice () undergoing brain cancer resection. After imaging, the mice were sacrificed and their brains were processed for histology. Here, we show the representative results of a mouse brain at the cancer site before surgery (a) and at the resection cavity after surgery (b). (c) Corresponding histology for the resection cavity after surgery was also shown. (d and e) With the same mouse, control images were imaged at a seemingly healthy area on the contralateral, left side of the brain (d), with its corresponding histology (e). The red circle indicates cancer, gray circle indicates resection cavity, and square was the OCT FOV. 2D optical property maps were displayed using an attenuation threshold of 5.5 mm−1. C, cancer; W, noncancer white matter; M, noncancer meninges. Aliasing artifacts at the image boundaries, which were produced when dorsal structures from outside the OCT depth were folded back into the image, were cropped out of image. 3D volumetric reconstructions were overlaid with optical property maps on the top surface. Optical attenuation properties were averaged for each subvolume of 0.326 mm × 0.008 mm × 1.8 mm within the tissue block, with a step size of 0.033 mm in the x direction. Each histological image (c and e) represented a cross-sectional view of the tissue block: the image corresponds to a single perpendicular slice through the attenuation map, along the dotted lines in (b) and (d), respectively. Residual cancer cells were marked with black arrows and correspond to yellow/red regions on the attenuation maps (at the level of the dotted line). Scale bars, 0.2 mm (reprinted with permission from [22]).