Table of Contents
Journal of Mycology
Volume 2013, Article ID 152941, 9 pages
http://dx.doi.org/10.1155/2013/152941
Research Article

Biofilm Formation by Filamentous Fungi Recovered from a Water System

Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, (IBB), 4710-057 Braga, Portugal

Received 8 December 2012; Revised 10 February 2013; Accepted 16 February 2013

Academic Editor: Praveen Rao Juvvadi

Copyright © 2013 Virgínia M. Siqueira and Nelson Lima. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. M. Wurzbacher, F. Bärlocher, and H. P. Grossart, “Fungi in lake ecosystems,” Aquatic Microbial Ecology, vol. 59, no. 2, pp. 125–149, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. U. Szewzyk, R. Szewzyk, W. Manz, and K. H. Schleifer, “Microbiogical safety of drinking water,” Annual Review of Microbiology, vol. 54, pp. 81–127, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. J. W. Costerton, K. J. Cheng, G. G. Geesey et al., “Bacterial biofilms in nature and disease,” Annual Review of Microbiology, vol. 41, pp. 435–464, 1987. View at Google Scholar · View at Scopus
  4. A. B. Gonçalves, I. M. Santos, R. R. M. Paterson, and N. Lima, “FISH and Calcofluor staining techniques to detect in situ filamentous fungal biofilms in water,” Revista Iberoamericana de Micologia, vol. 23, no. 3, pp. 194–198, 2006. View at Google Scholar · View at Scopus
  5. N. B. Sammon, K. M. Harrower, L. D. Fabbro, and R. H. Reed, “Three potential sources of microfungi in a treated municipal water supply system in sub-tropical Australia,” International Journal of Environmental Research and Public Health, vol. 8, no. 3, pp. 713–732, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. V. M. Siqueira, H. M. B. Oliveira, C. Santos, R. R. M. Paterson, N. B. Gusmão, and N. Lima, “Filamentous fungi in drinking water, particularly in relation to biofilm formation,” International Journal of Environmental Research and Public Health, vol. 8, no. 2, pp. 456–469, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Chandra, D. M. Kuhn, P. K. Mukherjee, L. L. Hoyer, T. McCormick, and M. A. Ghannoum, “Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance,” Journal of Bacteriology, vol. 183, no. 18, pp. 5385–5394, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. L. J. Douglas, “Candida biofilms and their role in infection,” TRENDS in Microbiology, vol. 11, pp. 30–36, 2003. View at Google Scholar
  9. D. W. Williams, T. Kuriyama, S. Silva, S. Malic, and M. A. O. Lewis, “Candida biofilms and oral candidosis: treatment and prevention,” Periodontology, vol. 55, no. 1, pp. 250–265, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Mowat, C. Williams, B. Jones, S. McChlery, and G. Ramage, “The characteristics of Aspergillus fumigatus mycetoma development: is this a biofilm?” Medical Mycology, vol. 47, no. 1, pp. S120–S126, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Bruns, M. Seidler, D. Albrecht et al., “Functional genomic profiling of Aspergillus fumigatus biofilm reveals enhanced production of the mycotoxin gliotoxin,” Proteomics, vol. 10, no. 17, pp. 3097–3107, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. F. M. C. Müller, M. Seidler, and A. Beauvais, “Aspergillus fumigatus biofilms in the clinical setting,” Medical Mycology, vol. 49, no. 1, pp. S96–S100, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Singh, M. R. Shivaprakash, and A. Chakrabarti, “Biofilm formation by zygomycetes: quantification, structure and matrix composition,” Microbiology Papers, vol. 157, no. 9, pp. 2611–2618, 2011. View at Publisher · View at Google Scholar
  14. D. M. Kuhn, T. George, J. Chandra, P. K. Mukherjee, and M. A. Ghannoum, “Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins,” Antimicrobial Agents and Chemotherapy, vol. 46, no. 6, pp. 1773–1780, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. M. M. Harriott and M. C. Noverr, “Candida albicans and Staphylococcus aureus form polymicrobial biofilms: effects on antimicrobial resistance,” Antimicrobial Agents and Chemotherapy, vol. 53, no. 9, pp. 3914–3922, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Silva, M. Henriques, R. Oliveira, D. Williams, and J. Azeredo, “In vitro biofilm activity of non-Candida albicansCandida species,” Current Microbiology, vol. 61, no. 6, pp. 534–540, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Ramage, R. Rajendran, M. Gutierrez-Correa, B. Jones, and C. Williams, “Aspergillus biofilms: clinical and industrial significance,” FEMS Microbiology Letters, vol. 324, no. 2, pp. 89–97, 2011. View at Publisher · View at Google Scholar
  18. A. A. Gorbushina, “Life on the rocks,” Environmental Microbiology, vol. 9, pp. 1613–1631, 2007. View at Google Scholar
  19. R. B. Srivastava, M. Awasthi, M. C. Upreti, and G. N. Mathur, “Studies on Aureobasidium pullulans forming biofilm on high strength aluminium alloy, a structural component, in aircraft fuel tanks,” Indian Journal of Engineering and Materials Sciences, vol. 13, no. 2, pp. 135–139, 2006. View at Google Scholar · View at Scopus
  20. A. A. Gorbushina, J. Heyrman, T. Dornieden et al., “Bacterial and fungal diversity and biodeterioration problems in mural painting environments of St. Martins church (Greene-Kreiensen, Germany),” International Biodeterioration and Biodegradation, vol. 53, no. 1, pp. 13–24, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. M. L. Grbić, J. Vukojević, G. S. Simić, J. Krizmanić, and M. Stupar, “Biofilm forming cyanobacteria, algae and fungi on two historic monuments in Belgrade, Serbia,” Archives of Biological Sciences, vol. 62, no. 3, pp. 625–631, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. W. Lan, H. Li, W. D. Wang, Y. Katayama, and J. D. Gu, “Microbial community analysis of fresh and old microbial biofilms on Bayon Temple sandstone of Angkor Thom, Cambodia,” Microbial Ecology, vol. 60, no. 1, pp. 105–115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. B. J. Baker, G. W. Tyson, L. Goosherst, and J. F. Banfield, “Insights into the diversity of eukaryotes in acid mine drainage biofilm communities,” Applied and Environmental Microbiology, vol. 75, no. 7, pp. 2192–2199, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Mowat, J. Butcher, S. Lang, C. Williams, and G. Ramage, “Development of a simple model for studying the effects of antifungal agents on multicellular communities of Aspergillus fumigatus,” Journal of Medical Microbiology, vol. 56, no. 9, pp. 1205–1212, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. V. M. Siqueira, Study of filamentous fungal biofilms with molecular and microscopic techniques [Ph.D. dissertation in Chemical and Biological Engineering], 2011, http://hdl.handle.net/1822/19679.
  26. C. G. Pierce, P. Uppuluri, A. R. Tristan et al., “A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing,” Nature Protocols, vol. 3, no. 9, pp. 1494–1500, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Beauvais, C. Schmidt, S. Guadagnini et al., “An extracellular matrix glues together the aerial-grown hyphae of Aspergillus fumigatus,” Cellular Microbiology, vol. 9, no. 6, pp. 1588–1600, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. M. W. Harding, L. L. R. Marques, R. J. Howard, and M. E. Olson, “Can filamentous fungi form biofilms?” Trends in Microbiology, vol. 17, no. 11, pp. 475–480, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. J. I. Prosser, “Hyphal growth patterns,” in Fungal Differentiation: A contemporary Synthesis, J. E. Smith, Ed., pp. 357–396, Marcel-Dekker, New York, NY, USA, 1983. View at Google Scholar
  30. M. Gutiérrez-Correa, Y. Ludeña, G. Ramage, and G. K. Villena, “Recent advances on filamentous fungal biofilms for industrial uses,” Applied Biochemistry and Biotechnology, vol. 167, pp. 1235–1253, 2012. View at Google Scholar
  31. P. Stoodley, K. Sauer, D. G. Davies, and J. W. Costerton, “Biofilms as complex differentiated communities,” Annual Review of Microbiology, vol. 56, pp. 187–209, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. D. G. Allison, “The biofilm matrix,” Biofouling, vol. 19, pp. 139–150, 2003. View at Google Scholar
  33. G. K. Villena, T. Fujikawa, S. Tsuyumu, and M. Gutiérrez-Correa, “Structural analysis of biofilms and pellets of Aspergillus niger by confocal laser scanning microscopy and cryo scanning electron microscopy,” Bioresource Technology, vol. 101, no. 6, pp. 1920–1926, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. G. K. Villena and M. Gutiérrez-Correa, “Production of cellulase by Aspergillus niger biofilms developed on polyester cloth,” Letters in Applied Microbiology, vol. 43, no. 3, pp. 262–268, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. J. U. Ponikau, “The diagnosis and incidence of allergic fungal sinusitis,” Mayo Clinic Proceedings, vol. 74, no. 9, pp. 877–884, 1999. View at Google Scholar · View at Scopus
  36. G. Di Bonaventura, A. Pompilio, C. Picciani, M. Iezzi, D. D'Antonio, and R. Piccolomini, “Biofilm formation by the emerging fungal pathogen Trichosporon asahii: development, architecture, and antifungal resistance,” Antimicrobial Agents and Chemotherapy, vol. 50, no. 10, pp. 3269–3276, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. J. L. Laseter, J. Weete, and D. J. Weber, “Alkanes, fatty acid methyl esters, and free fatty acids in surface wax of Ustilago maydis,” Phytochemistry, vol. 7, no. 7, pp. 1177–1181, 1968. View at Google Scholar · View at Scopus
  38. T. Singh, R. Saikia, T. Jana, and D. K. Arora, “Hydrophobicity and surface electrostatic charge of conidia of the mycoparasitic Trichoderma species,” Mycological Progress, vol. 3, pp. 219–228, 2004. View at Google Scholar
  39. D. J. Holder, B. H. Kirkland, M. W. Lewis, and N. O. Keyhani, “Surface characteristics of the entomopathogenic fungus Beauveria (Cordyceps) bassiana,” Microbiology, vol. 153, no. 10, pp. 3448–3457, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. V. M. Siqueira and N. Lima, “Surface hydrophobicity of culture and water biofilm of Penicillium spp,” Current Microbiology, vol. 64, pp. 93–99, 2012. View at Google Scholar
  41. J. Meletiadis, J. F. G. M. Meis, J. W. Mouton, J. P. Donnelly, and P. E. Verweij, “Comparison of NCCLS and 3-(4,5-dimethyl-2-thiazyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) methods of in vitro susceptibility testing of filamentous fungi and development of a new simplified method,” Journal of Clinical Microbiology, vol. 38, no. 8, pp. 2949–2954, 2000. View at Google Scholar · View at Scopus
  42. B. Jahn, A. Stüben, and S. Bhakdi, “Colorimetric susceptibility testing for Aspergillus fumigatus: comparison of menadione-augmented 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide and Alamar Blue tests,” Journal of Clinical Microbiology, vol. 34, no. 8, pp. 2039–2041, 1996. View at Google Scholar · View at Scopus
  43. B. P. Krom, J. B. Cohen, G. E. McElhaney Feser, and R. L. Cihlar, “Optimized candidal biofilm microtiter assay,” Journal of Microbiological Methods, vol. 68, no. 2, pp. 421–423, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. F. M. Freimoser, C. A. Jakob, M. Aebi, and U. Tuor, “The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay is a fast and reliable method for colorimetric determination of fungal cell densities,” Applied and Environmental Microbiology, vol. 65, no. 8, pp. 3727–3729, 1999. View at Google Scholar · View at Scopus