Table of Contents
Journal of Mycology
Volume 2013 (2013), Article ID 172056, 10 pages
http://dx.doi.org/10.1155/2013/172056
Research Article

Biodiversity, Antimicrobial Potential, and Phylogenetic Placement of an Endophytic Fusarium oxysporum NFX 06 Isolated from Nothapodytes foetida

Department of Chemical Engineering, National Institute of Technology Karnataka, Srinivasa Nagar, Surathkal, Karnataka 575 025, India

Received 30 September 2013; Revised 31 October 2013; Accepted 5 November 2013

Academic Editor: Simona Nardoni

Copyright © 2013 Sogra Fathima Musavi and Raj Mohan Balakrishnan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. W. Bacon and J. White, Microbial Endophytes, Marcel Dekker, New York, NY, USA, 2000.
  2. M. M. Dreyfuss and I. H. Chapela, “Potential of fungi in the discovery of novel, low molecular weight pharmaceuticals,” in The Discovery of Natural Products With Therapeutic Potential, V. P. Gullo, Ed., pp. 49–80, Butterworth-Heinemann, Boston, Mass, USA, 1994. View at Google Scholar
  3. A. E. Arnold, Z. Maynard, and G. S. Gilbert, “Fungal endophytes in dicotyledonous neotropical trees: patterns of abundance and diversity,” Mycological Research, vol. 105, no. 12, pp. 1502–1507, 2001. View at Google Scholar · View at Scopus
  4. I. R. Sanders, “Plant and arbuscular mycorrhizal fungal diversity—are we looking at the relevant levels of diversity and are we using the right techniques?” New Phytologist, vol. 164, no. 3, pp. 415–418, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. J. M. U'Ren, J. W. Dalling, R. E. Gallery et al., “Diversity and evolutionary origins of fungi associated with seeds of a neotropical pioneer tree: a case study for analysing fungal environmental samples,” Mycological Research, vol. 113, no. 4, pp. 432–449, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. O. Petrini, T. N. Sieber, L. Toti, and O. Viret, “Ecology, metabolite production, and substrate utilization in endophytic fungi,” Natural toxins, vol. 1, no. 3, pp. 185–196, 1992. View at Google Scholar · View at Scopus
  7. G. Soca-Chafre, F. N. Rivera-Orduña, M. E. Hidalgo-Lara, C. Hernandez-Rodriguez, R. Marsch, and L. B. Flores-Cotera, “Molecular phylogeny and paclitaxel screening of fungal endophytes from Taxus globosa,” Fungal Biology, vol. 115, no. 2, pp. 143–156, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. U. Pinruan, N. Rungjindamai, R. Choeyklin, S. Lumyong, K. D. Hyde, and E. B. G. Jones, “Occurrence and diversity of basidiomycetous endophytes from the oil palm, Elaeis guineensis in Thailand,” Fungal Diversity, vol. 41, pp. 71–88, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. A. B. M. Vaz, R. C. Mota, M. R. Q. Bomfim et al., “Antimicrobial activity of endophytic fungi associated with Orchidaceae in Brazil,” Canadian Journal of Microbiology, vol. 55, no. 12, pp. 1381–1391, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. L. H. Rosa, M. D. L. Almeida Vieira, I. F. Santiago, and C. A. Rosa, “Endophytic fungi community associated with the dicotyledonous plant Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae) in Antarctica,” FEMS Microbiology Ecology, vol. 73, no. 1, pp. 178–189, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Strobel, B. Daisy, U. Castillo, and J. Harper, “Natural Products from Endophytic Microorganisms,” Journal of Natural Products, vol. 67, no. 2, pp. 257–268, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. H. W. Zhang, Y. C. Song, and R. X. Tan, “Biology and chemistry of endophytes,” Natural Product Reports, vol. 23, no. 5, pp. 753–771, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. J.-H. Song, “What's new on the antimicrobial horizon?” International Journal of Antimicrobial Agents, vol. 32, no. 4, pp. S207–S213, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. A. L. Demain and S. Sanchez, “Microbial drug discovery: 80 Years of progress,” Journal of Antibiotics, vol. 62, no. 1, pp. 5–16, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Yu, L. Zhang, L. Li et al., “Recent developments and future prospects of antimicrobial metabolites produced by endophytes,” Microbiological Research, vol. 165, no. 6, pp. 437–449, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. X. Liu, M. Dong, X. Chen, M. Jiang, X. Lv, and J. Zhou, “Antimicrobial activity of an endophytic Xylaria sp.YX-28 and identification of its antimicrobial compound 7-amino-4-methylcoumarin,” Applied Microbiology and Biotechnology, vol. 78, no. 2, pp. 241–247, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. C. P. Narayan, W. K. Kim, S. K. Woo, M. S. Park, and S. H. Yu, “Fungal endophytes in roots of aralia species and their antifungal activity,” Journal of Plant Pathology, vol. 23, no. 4, pp. 287–294, 2007. View at Publisher · View at Google Scholar
  18. S. Maheswari and K. Rajagopal, “Biodiversity of endophytic fungi in Kigelia pinnata during two different Seasons,” Current Science, vol. 104, pp. 515–518, 2013. View at Google Scholar
  19. F. W. Wang, R. H. Jiao, A. B. Cheng, S. H. Tan, and Y. C. Song, “Antimicrobial potentials of endophytic fungi residing in Quercus variabilis and brefeldin a obtained from Cladosporium sp,” World Journal of Microbiology and Biotechnology, vol. 23, no. 1, pp. 79–83, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. V. Gangadevi and J. Muthumary, “Taxol, an anticancer drug produced by an endophytic fungus Bartalinia robillardoides Tassi, isolated from a medicinal plant, Aegle marmelos Correa ex Roxb,” World Journal of Microbiology and Biotechnology, vol. 24, no. 5, pp. 717–724, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. S. C. Parija, M. R. Shivaprakash, and S. R. Jayakeerthi, “Evaluation of lacto-phenol cotton blue (LPCB) for detection of Cryptosporidium, Cyclospora and Isospora in the wet mount preparation of stool,” Acta Tropica, vol. 85, no. 3, pp. 349–354, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. O. Petrini, “Fungal endophytes of tree leaves,” in Microbial Ecology of Leaves, pp. 179–197, Springer, New York, NY, USA, 1991. View at Google Scholar
  23. R. W. Poole, An Introduction to Quantitative Ecology, McGraw- Hill, New York, NY, USA, 1974.
  24. J. V. Groth and A. P. Roelfs, “The concept of measurement of phenotypic diversity in Puccinia graminis on wheat,” Phytopathology, vol. 77, pp. 1394–1399, 1987. View at Google Scholar
  25. NCCLS, “Methods for determining bactericidal activity of antimicrobial agents,” Approved Guideline M26-A, National Committee for Clinical Laboratory Standards, Wayne, Pa, USA, 1996. View at Google Scholar
  26. T. J. White, T. Bruns, S. Lee, and J. Taylor, “Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics,” in PCR Protocols: A Guide to Methods and Applications, M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White, Eds., pp. 315–322, Academic Press, New York, NY, USA, 1990. View at Google Scholar
  27. K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar, “MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods,” Molecular Biology and Evolution, vol. 28, no. 10, pp. 2731–2739, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. K. Saikkonen, S. H. Faeth, M. Helander, and T. J. Sullivan, “Fungal endophytes: a continuum of interactions with host plants,” Annual Review of Ecology and Systematics, vol. 29, pp. 319–343, 1998. View at Publisher · View at Google Scholar · View at Scopus
  29. I. H. Chapela and L. Boddy, “Fungal colonization of attached beech branches. I. Early stages of development of fungal communities,” New Phytologist, vol. 110, no. 1, pp. 39–45, 1988. View at Google Scholar · View at Scopus
  30. P. J. Fisher, O. Petrini, and B. C. Sutton, “A comparative study of fungal endophytes in leaves, xylem and bark of Eucalyptus in Australia and England,” Sydowia, vol. 45, pp. 338–345, 1993. View at Google Scholar
  31. T. S. Suryanarayanan, V. Kumaresan, and J. A. Johnson, “Foliar fungal endophytes from two species of the mangrove Rhizophora,” Canadian Journal of Microbiology, vol. 44, no. 10, pp. 1003–1006, 1998. View at Google Scholar · View at Scopus
  32. K. Rajagopal and T. S. Suryanarayanan, “Isolation of endophytic fungi from leaves of neem (Azadirachta indica A. Juss.),” Current Science, vol. 78, no. 11, pp. 1375–1378, 2000. View at Google Scholar · View at Scopus
  33. S.-Y. Lee, I. Nakajima, F. Ihara, H. Kinoshita, and T. Nihira, “Cultivation of entomopathogenic fungi for the search of antibacterial compounds,” Mycopathologia, vol. 160, no. 4, pp. 321–325, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. P. J. Fisher, O. Petrini, L. E. Petrini, and B. C. Sutton, “Fungal endophytes from the leaves and twigs of Quercus ilex L. from England, Majorca and Switzerland,” New Phytologist, vol. 127, no. 1, pp. 133–137, 1994. View at Google Scholar · View at Scopus
  35. W. Fabry, P. O. Okemo, and R. Ansorg, “Antibacterial activity of East African medicinal plants,” Journal of Ethnopharmacology, vol. 60, no. 1, pp. 79–84, 1998. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Powthong, B. Jantrapanukorn, A. Thongmee, and P. Suntornthiticharoen, “Evaluation of endophytic fungi extracts for their antimicrobial activity from Sesbania grandiflora (L.) pers,” International Journal of Pharmaceutical Biomedical Research, vol. 3, pp. 132–136, 2012. View at Google Scholar
  37. V. Edel, C. Steinberg, I. Avelange, G. Laguerre, and C. Alabouvette, “Comparison of three molecular methods for the characterization of Fusarium oxysporum strains,” Phytopathology, vol. 85, no. 5, pp. 579–585, 1995. View at Google Scholar · View at Scopus
  38. K. S. Elais, R. W. Schneider, and M. M. Lear, “Analysis of vegetative compatibility group in nonpathogenic population of Fusarium oxysporum isolated from symptomless tomato root,” Canadian Journal of Botany, vol. 69, pp. 2089–2094, 1991. View at Google Scholar
  39. S. L. Woo, A. Zoina, G. Del Sorbo et al., “Characterization of Fusarium oxysporum f. sp. phaseoli by pathogenic races, VCGs, RFLPs, and RAPD,” Phytopathology, vol. 86, no. 9, pp. 966–973, 1996. View at Google Scholar · View at Scopus
  40. B. P. Barik, K. Tayung, P. J. Narayan, and S. K. Dutta, “Phylogenetic placement of an endophytic fungus Fusarium oxysporum isolated from Acorus calamus rhizomes with antimicrobial activity,” EJBS, vol. 2, no. 1, 2010. View at Google Scholar
  41. R. P. Baayen, K. O'Donnell, P. J. M. Bonants et al., “Gene genealogies and AFLP analyses in the Fusarium oxysporum complex identify monophyletic and nonmonophyletic formae speciales causing wilt and rot disease,” Phytopathology, vol. 90, no. 8, pp. 891–900, 2000. View at Google Scholar · View at Scopus
  42. K. Skovgaard, L. Bødker, and S. Rosendahl, “Population structure and pathogenicity of members of the Fusarium oxysporum complex isolated from soil and root necrosis of pea (Pisum sativum L.),” FEMS Microbiology Ecology, vol. 42, no. 3, pp. 367–374, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. K. F. Rodrigues, “The foliar fungal endophytes of the Amazonian palm Euterpe oleracea,” Mycologia, vol. 86, no. 3, pp. 376–385, 1994. View at Google Scholar · View at Scopus
  44. D. Wilson and G. C. CarrolL, “Infection studies of Discula quercina, an endophyte of Quercus garryana,” Mycologia, vol. 86, no. 5, pp. 635–647, 1994. View at Google Scholar · View at Scopus
  45. R. Jeewon, J. Ittoo, D. Mahadeb, Y. J. Fakim, H.-K. Wang, and A.-R. Liu, “DNA based identification and phylogenetic characterisation of endophytic and saprobic Fungi from Antidesma madagascariense, a medicinal plant in mauritius,” Journal of Mycology, vol. 2013, Article ID 781914, 10 pages, 2013. View at Publisher · View at Google Scholar
  46. K. Tayung and D. K. Jha, “Antimicrobial evaluation ofsomefungal endophytes isolated frombarkofHimalayanyew,” World Journal of AgriculturalSciences, vol. 2, pp. 489–494, 2006. View at Google Scholar
  47. J. Mohanta, K. Tayung, and U. B. Mohapatra, “Antimicrobial potentials of endophytic fungi inhabiting three ethnomedicinal plants of similipal biosphere reserve, India,” Internet Journal of Microbiology, vol. 5, no. 2, 2008. View at Google Scholar
  48. S. Padhi and K. Tayung, “Antimicrobial activity and molecular characterization of an endophytic fungus, Quambalaria sp. isolated from Ipomoea carnea,” Annals of Microbiology, vol. 63, no. 2, pp. 793–800, 2013. View at Publisher · View at Google Scholar
  49. S. K. Jena and K. Tayung, “Endophytic fungal communities associated with two ethno-medicinal plants of similipal biosphere reserve, India and their antimicrobial prospective,” Journal of Applied Pharmaceutical Science, vol. 3, p. S7, 2013. View at Google Scholar