Table of Contents
Journal of Mycology
Volume 2013, Article ID 358140, 7 pages
http://dx.doi.org/10.1155/2013/358140
Research Article

Screening of Fusarium graminearum Isolates for Enzymes Extracellular and Deoxynivalenol Production

Research and Development Center for Industrial Fermentations (CINDEFI), UNLP, CCT-La Plata, CONICET, School of Science, La Plata National University, B1900ASH La Plata, Argentina

Received 30 May 2013; Revised 20 September 2013; Accepted 10 October 2013

Academic Editor: Maria João Sousa

Copyright © 2013 Leonel M. Ortega et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. A. Lazzari, “Control integrado de plagas, manejo de hongos e insectos,” Granos y Post-Cosecha Latinoamericana, vol. 6, no. 23, 2000. View at Google Scholar
  2. S. R. Pirgozliev, S. G. Edwards, M. C. Hare, and P. Jenkinson, “Strategies for the control of Fusarium head blight in cereals,” European Journal of Plant Pathology, vol. 109, no. 7, pp. 731–742, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. I. Malbrán, C. A. Mourelos, J. R. Girotti, M. B. Aulicino, P. A. Balatti, and G. A. Lori, “Aggressiveness variation of Fusarium graminearum isolates from Argentina following point inoculation of field grown wheat spikes,” Crop Protection, vol. 42, pp. 234–243, 2012. View at Publisher · View at Google Scholar
  4. Á. Mesterházy, T. Bartók, C. G. Mirocha, and R. Komoróczy, “Nature of wheat resistance to Fusarium head blight and the role of deoxynivalenol for breeding,” Plant Breeding, vol. 118, no. 2, pp. 97–110, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. G. E. Kikot, R. A. Hours, and T. M. Alconada, “Contribution of cell wall degrading enzymes to pathogenesis of Fusarium graminearum: a review,” Journal of Basic Microbiology, vol. 49, no. 3, pp. 231–241, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. G. E. Kikot, R. A. Hours, and T. M. Alconada, “Extracellular enzymes of Fusarium graminearum isolates,” Brazilian Archives of Biology and Technology, vol. 53, no. 4, pp. 779–783, 2010. View at Google Scholar · View at Scopus
  7. Z. Kang and H. Buchenauer, “Ultrastructural and cytochemical studies on cellulose, xylan and pectin degradation in wheat spikes infected by Fusarium culmorum,” Journal of Phytopathology, vol. 148, no. 5, pp. 263–275, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. Z. Kang and H. Buchenauer, “Cytology and ultrastructure of the infection of wheat spikes by Fusarium culmorum,” Mycological Research, vol. 104, no. 9, pp. 1083–1093, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. N. J. Jenczmionka and W. Schäfer, “The Gpmk1 MAP kinase of Fusarium graminearum regulates the induction of specific secreted enzymes,” Current Genetics, vol. 47, no. 1, pp. 29–36, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. J. M. Wagacha and J. W. Muthomi, “Fusarium culmorum: infection process, mechanisms of mycotoxin production and their role in pathogenesis in wheat,” Crop Protection, vol. 26, no. 7, pp. 877–885, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Jackowiak, D. Packa, M. Wiwart, J. Perkowski, M. Busko, and A. Borusiewicz, “Scanning electron microscopy of mature wheat kernels infected with Fusarium culmorum,” Journal of Applied Genetic, vol. 43, pp. 167–176, 2002. View at Google Scholar
  12. W. M. Wanjiru, K. Zhensheng, and H. Buchenauer, “Importance of cell wall degrading enzymes produced by Fusarium graminearum during infection of wheat heads,” European Journal of Plant Pathology, vol. 108, no. 8, pp. 803–810, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Jansen, D. von Wettstein, W. Schäfer, K. Kogel, A. Felk, and F. J. Maier, “Infection pattern in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 46, pp. 16892–16897, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. V. Phalip, F. Delalande, C. Carapito et al., “Diversity of the exoproteome of Fusarium graminearum grown on plant cell wall,” Current Genetics, vol. 48, no. 6, pp. 366–379, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. A. T. Have, W. Mulder, J. Visser, and J. A. L. van kan, “The endopolygalacturonase gene Bcpg1 is required to full virulence of Botrytis cinerea,” Molecular Plant-Microbe Interactions, vol. 11, no. 10, pp. 1009–1016, 1998. View at Google Scholar · View at Scopus
  16. F. I. García-Maceira, A. Di Pietro, M. D. Huertas-González, M. C. Ruiz-Roldán, and M. I. G. Roncero, “Molecular characterization of an endopolygalacturonase from Fusarium oxysporum expressed during early stages of infection,” Applied and Environmental Microbiology, vol. 67, no. 5, pp. 2191–2196, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. O. Valette-Collet, A. Cimerman, P. Reignault, C. Levis, and M. Boccara, “Disruption of Botrytis cinerea pectin methylesterase gene Bcpme1 reduces virulence on several host plants,” Molecular Plant-Microbe Interactions, vol. 16, no. 4, pp. 360–367, 2003. View at Google Scholar · View at Scopus
  18. M. I. G. Roncero, C. Hera, M. Ruiz-Rubio et al., “Fusarium as a model for studying virulence in soilborne plant pathogens,” Physiological and Molecular Plant Pathology, vol. 62, no. 2, pp. 87–98, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. M. J. Nightingale, B. A. Marchylo, R. M. Clear, J. E. Dexter, and K. R. Preston, “Fusarium head blight: effect of fungal proteases on wheat storage proteins,” Cereal Chemistry, vol. 76, no. 1, pp. 150–158, 1999. View at Google Scholar · View at Scopus
  20. A. J. Barneix, “Physiology and biochemistry of source-regulated protein accumulation in the wheat grain,” Journal of Plant Physiology, vol. 164, no. 5, pp. 581–590, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Brzozowski, K. Dawidziuk, and W. Bednarski, “Gliadin degradation by proteases of Fusarium genus fungi in different in vivo and in vitro conditions,” Polish Journal of Natural Sciences, vol. 23, pp. 188–206, 2008. View at Publisher · View at Google Scholar
  22. J. Feng, G. Liu, G. Selvaraj, G. R. Hughes, and Y. Wei, “A secreted lipase encoded by LIP1 is necessary for efficient use of saturated triglyceride lipids in Fusarium graminearum,” Microbiology, vol. 151, no. 12, pp. 3911–3921, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Pritsch, G. J. Muehlbauer, W. R. Bushnell, D. A. Somers, and C. P. Vance, “Fungal development and induction of defense response genes during early infection of wheat spikes by Fusarium graminearum,” Molecular Plant-Microbe Interactions, vol. 13, no. 2, pp. 159–169, 2000. View at Google Scholar · View at Scopus
  24. R. H. Proctor, T. M. Hohn, and S. P. McCormick, “Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene,” Molecular Plant-Microbe Interactions, vol. 8, no. 4, pp. 593–601, 1995. View at Google Scholar · View at Scopus
  25. S. D. Harris, “Morphogenesis in germinating Fusarium graminearum macroconidia,” Mycologia, vol. 97, no. 4, pp. 880–887, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. P. B. Schwarz, R. D. Horsley, B. J. Steffenson, B. Salas, and J. M. Barr, “Quality risks associated with the utilization of Fusarium head blight infected malting barley,” Journal of the American Society of Brewing Chemists, vol. 64, no. 1, pp. 1–7, 2006. View at Google Scholar · View at Scopus
  27. M. J. Martínez, M. T. Alconada, F. Guillén, C. Vázquez, and F. Reyes, “Pectic activities from Fusarium oxysporum f. sp. melonis: purification and characterization of an exopolygalacturonase,” FEMS Microbiology Letters, vol. 81, no. 2, pp. 145–150, 1991. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Somogyi, “Notes on sugar determination,” The Journal of Biological Chemistry, vol. 195, no. 1, pp. 19–23, 1952. View at Google Scholar · View at Scopus
  29. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Google Scholar · View at Scopus
  30. M. Hellweg, Molecular biological and biochemical studies of proteolytic enzymes of the cereal pathogen Fusarium graminearum [Inaugural Dissertation der Westfälischen Wilhelms], Universität Münster, 2003.
  31. C. Sequeiros, L. M. I. López, N. O. Caffini, and C. L. Natalucci, “Proteolytic activity in some Patagonian plants from Argentina,” Fitoterapia, vol. 74, no. 6, pp. 570–577, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. M. L. Ramirez, S. Chulze, and N. Magan, “Temperature and water activity effects on growth and temporal deoxynivalenol production by two Argentinean strains of Fusarium graminearum on irradiated wheat grain,” International Journal of Food Microbiology, vol. 106, no. 3, pp. 291–296, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Schmidt-Heydt, R. Parra, R. Geisen, and N. Magan, “Modelling the relationship between environmental factors, transcriptional genes and deoxynivalenol mycotoxin production by strains of two Fusarium species,” Journal of the Royal Society Interface, vol. 8, no. 54, pp. 117–126, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. J. M. Cooney, D. R. Lauren, and M. E. Di Menna, “Impact of competitive fungi on trichothecene production by Fusarium graminearum,” Journal of Agricultural and Food Chemistry, vol. 49, no. 1, pp. 522–526, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. G. H. Bai, A. E. Desjardins, and R. D. Plattner, “Deoxynivalenol-nonproducing Fusarium graminearum causes initial infection, but does not cause disease spread in wheat spikes,” Mycopathologia, vol. 153, no. 2, pp. 91–98, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. Z. Kang, H. Buchenauer, L. Huang, Q. Han, and H. Zhang, “Cytological and immunocytochemical studies on responses of wheat spikes of the resistant Chinese cv. Sumai 3 and the susceptible cv. Xiaoyan 22 to infection by Fusarium graminearum,” European Journal of Plant Pathology, vol. 120, no. 4, pp. 383–396, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. Z. Kang, I. Zingen-Sell, and H. Buchenauer, “Infection of wheat spikes by Fusarium avenaceum and alterations of cell wall components in the infected tissue,” European Journal of Plant Pathology, vol. 111, no. 1, pp. 19–28, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. P. B. Schwarz, B. L. Jones, and B. J. Steffenson, “Enzymes associated with Fusarium infection of barley,” Journal of the American Society of Brewing Chemists, vol. 60, no. 3, pp. 130–134, 2002. View at Google Scholar · View at Scopus