Table of Contents
Journal of Mycology
Volume 2013, Article ID 753692, 7 pages
http://dx.doi.org/10.1155/2013/753692
Research Article

Tetrazolium/Formazan Test as an Efficient Method to Determine Fungal Chitosan Antimicrobial Activity

1Genetic Engineering and Biotechnology Research Institute, Minoufiya University, El-Sadat City, P.O. Box 79/22857, Egypt
2The Promising Research Center in Biological Control and Agricultural Information, the University of Qassim, P.O. Box 6622, Buraydah 51452, Saudi Arabia
3Department of Food Science & Human Nutrition, College of Agriculture & Veterinary Medicine, Qassim University, P.O. Box 6622, Buraydah 51452, Saudi Arabia
4National Research Center, Textile Division, Textile Chemistry and Technology, Department of Preparation and Finishing of Cellulosic Fibers, Tahrir Street, Dokki, P.O. Box 12622, Giza, Egypt

Received 8 March 2013; Revised 13 May 2013; Accepted 13 May 2013

Academic Editor: Zia U. Khan

Copyright © 2013 Shaaban H. Moussa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Liu, Y. Du, X. Wang, and L. Sun, “Chitosan kills bacteria through cell membrane damage,” International Journal of Food Microbiology, vol. 95, no. 2, pp. 147–155, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. A. A. Tayel, S. Moussa, K. Opwis, D. Knittel, E. Schollmeyer, and A. Nickisch-Hartfiel, “Inhibition of microbial pathogens by fungal chitosan,” International Journal of Biological Macromolecules, vol. 47, no. 1, pp. 10–14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Moussa, A. Ibrahim, A. Okba, H. Hamza, K. Opwis, and E. Schollmeyer, “Antibacterial action of acetic acid soluble material isolated from Mucor rouxii and its application onto textile,” International Journal of Biological Macromolecules, vol. 48, no. 5, pp. 736–741, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. E. I. Rabea, M. E. Badawy, C. V. Stevens, G. Smagghe, and W. Steurbaut, “Chitosan as antimicrobial agent: applications and mode of action,” Biomacromolecules, vol. 4, no. 6, pp. 1457–1465, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Lim and S. M. Hudson, “Review of chitosan and its derivatives as antimicrobial agents and their uses as textile chemicals,” Journal of Macromolecular Science—Polymer Reviews, vol. 43, no. 2, pp. 223–269, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. A. A. Tayel, S. H. Moussa, W. F. El-Tras, N. M. Elguindy, and K. Opwis, “Antimicrobial textile treated with chitosan from Aspergillus niger mycelial waste,” International Journal of Biological Macromolecules, vol. 49, no. 2, pp. 241–245, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. A. A. Tayel, S. Moussa, W. F. El-Tras, D. Knittel, K. Opwis, and E. Schollmeyer, “Anticandidal action of fungal chitosan against Candida albicans,” International Journal of Biological Macromolecules, vol. 47, no. 4, pp. 454–457, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Li, X. G. Chen, N. Liu et al., “Physicochemical characterization and antibacterial property of chitosan acetates,” Carbohydrate Polymers, vol. 67, no. 2, pp. 227–232, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Kong, X. G. Chen, K. Xing, and H. J. Park, “Antimicrobial properties of chitosan and mode of action: a state of the art review,” International Journal of Food Microbiology, vol. 144, no. 1, pp. 51–63, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. J. H. Jorgensen, J. D. Turnidge, and J. A. Washington, “Antibacterial susceptibility tests: dilution and disk diffusion methods,” in Manual of Clinical Microbiology, pp. 1526–1543, ASM Press, Washington, DC, USA, 7th edition, 1999. View at Google Scholar
  11. C. Valgas, S. M. De Souza, E. F. A. Smânia, and A. Smânia Jr., “Screening methods to determine antibacterial activity of natural products,” Brazilian Journal of Microbiology, vol. 38, no. 2, pp. 369–380, 2007. View at Google Scholar · View at Scopus
  12. H. M. Wehr and J. H. Frank, Standard Methods for the Microbiological Examination of Dairy Products, APHA Inc., Washington, DC, USA, 17th edition, 2004.
  13. A. D. Eaton, L. S. Clesceri, A. E. Greenberg et al., Standard Methods for the Examination of Water and Wastewater, APHA, Washington, DC, USA, 21st edition, 2005.
  14. H. Barreteau, L. Mandoukou, I. Adt, I. Gaillard, B. Courtois, and J. Courtois, “A rapid method for determining the antimicrobial activity of novel natural molecules,” Journal of Food Protection, vol. 67, no. 9, pp. 1961–1964, 2004. View at Google Scholar · View at Scopus
  15. A. Sundsfjord, G. S. Simonsen, B. C. Haldorsen et al., “Genetic methods for detection of antimicrobial resistance,” APMIS, vol. 112, no. 11-12, pp. 815–837, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. AOAC, Official Methods of Analysis of the Association of Official Analytical Chemists, Association of Official Analytical Chemists, Arlington, Va, USA, 15th edition, 1990.
  17. D. H. Davies and E. R. Hayes, “Determination of the degree of acetylation of chitin and chitosan,” Methods in Enzymology, vol. 161, no. C, pp. 442–446, 1988. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Chung, H. Wang, Y. Chen, and S. Li, “Effect of abiotic factors on the antibacterial activity of chitosan against waterborne pathogens,” Bioresource Technology, vol. 88, no. 3, pp. 179–184, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Chatterjee, M. Adhya, A. K. Guha, and B. P. Chatterjee, “Chitosan from Mucor rouxii: production and physico-chemical characterization,” Process Biochemistry, vol. 40, no. 1, pp. 395–400, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Je and S. Kim, “Chitosan derivatives killed bacteria by disrupting the outer and inner membrane,” Journal of Agricultural and Food Chemistry, vol. 54, no. 18, pp. 6629–6633, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. J. N. Eloff, “A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria,” Planta Medica, vol. 64, no. 8, pp. 711–713, 1998. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Caviedes, J. Delgado, and R. H. Gilman, “Tetrazolium microplate assay as a rapid and inexpensive colorimetric method for determination of antibiotic susceptibility of Mycobacterium tuberculosis,” Journal of Clinical Microbiology, vol. 40, no. 5, pp. 1873–1874, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Abate, A. Aseffa, A. Selassie et al., “Direct colorimetric assay for rapid detection of rifampin-resistant Mycobacterium tuberculosis,” Journal of Clinical Microbiology, vol. 42, no. 2, pp. 871–873, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. F. P. Altman, “Tetrazolium salts and formazans,” Progress in Histochemistry and Cytochemistry, vol. 9, no. 3, pp. 1–56, 1976. View at Google Scholar · View at Scopus
  25. S. M. Thom, R. W. Horobin, E. Seidler, and M. R. Barer, “Factors affecting the selection and use of tetrazolium salts as cytochemical indicators of microbial viability and activity,” Journal of Applied Bacteriology, vol. 74, no. 4, pp. 433–443, 1993. View at Google Scholar · View at Scopus
  26. E. I. Kvasnikov, L. N. Gerasimenko, and Zh. Tabarovskaia, “Use of 2, 3, 5-triphenyl tetrazolium chloride for rapid detection of mesophilic anaerobic bacteria in the canning industry,” Voprosy Pitaniia, no. 6, pp. 62–65, 1974. View at Google Scholar
  27. N. Yamane, T. Oiwa, T. Kiyota et al., “Multicenter evaluation of a colorimetric microplate antimycobacterial susceptibility test: comparative study with the NCCLS M24-P,” Rinsho Byori, vol. 44, no. 5, pp. 456–464, 1996. View at Google Scholar · View at Scopus
  28. R. N. Mshana, G. Tadesse, G. Abate, and H. Miörner, “Use of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide for rapid detection of rifampin-resistant: Mycobacterium tuberculosis,” Journal of Clinical Microbiology, vol. 36, no. 5, pp. 1214–1219, 1998. View at Google Scholar · View at Scopus
  29. S. Lee, D. H. Kong, S. H. Yun et al., “Evaluation of a modified antimycobacterial susceptibility test using Middlebrook 7H10 agar containing 2,3-diphenyl-5-thienyl-(2)-tetrazolium chloride,” Journal of Microbiological Methods, vol. 66, no. 3, pp. 548–551, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. D. M. Yajko, J. J. Madej, M. V. Lancaster et al., “Colorimetric method for determining MICs of antimicrobial agents for Mycobacterium tuberculosis,” Journal of Clinical Microbiology, vol. 33, no. 9, pp. 2324–2327, 1995. View at Google Scholar · View at Scopus