Table of Contents
Journal of Numbers
Volume 2014, Article ID 803649, 10 pages
http://dx.doi.org/10.1155/2014/803649
Research Article

Using Continued Fractions to Compute Iwasawa Lambda Invariants of Imaginary Quadratic Number Fields

Department of Mathematics, University of California, South Hall, Room 6607, Santa Barbara, CA 93106-3080, USA

Received 18 August 2014; Accepted 27 October 2014; Published 17 November 2014

Academic Editor: Cheon S. Ryoo

Copyright © 2014 Jordan Schettler. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. S. Milne, “Class field theory (v4.00),” 2008, http://www.jmilne.org/math/.
  2. D. Zagier, “A Kronecker limit formula for real quadratic fields,” Mathematische Annalen, vol. 213, pp. 153–184, 1975. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  3. D. B. Zagier, Zetafunktionen und Quadratische Körper, Springer, Berlin, Germany, 1981. View at MathSciNet
  4. C. Meyer, Die Berechnung der Klassenzahl Abelscher Körper über quadratischen Zahlkörpern, Akademie, Berlin , Germany, 1957. View at MathSciNet
  5. S. Yamamoto, “On Kronecker limit formulas for real quadratic fields,” Journal of Number Theory, vol. 128, no. 2, pp. 426–450, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. T. Shintani, “On evaluation of zeta functions of totally real algebraic number fields at non-positive integers,” Journal of the Faculty of Science, University of Tokyo, vol. 23, pp. 393–417, 1976. View at Google Scholar
  7. F. Hirzebruch, “Hilbert modular surfaces,” L'Enseignement Mathématique, vol. 19, no. 2, pp. 183–281, 1973. View at Google Scholar · View at MathSciNet
  8. B. Ferrero and L. C. Washington, “The Iwasawa invariant μp vanishes for abelian number fields,” Annals of Mathematics Second Series, vol. 109, no. 2, pp. 377–395, 1979. View at Publisher · View at Google Scholar · View at MathSciNet
  9. K. Iwasawa, “On Γ-extensions of algebraic number fields,” Bulletin of the American Mathematical Society, vol. 65, pp. 183–226, 1959. View at Publisher · View at Google Scholar · View at MathSciNet
  10. R. Greenberg, “Iwasawa theory—past and present,” in Class Field Theory—its Centenary and Prospect (Tokyo, 1998), vol. 30 of Advanced Studies in Pure Mathematics, pp. 335–385, Mathematical Society of Japan, Tokyo, Japan, 2001. View at Google Scholar · View at MathSciNet
  11. R. Greenberg, On some questions concerning the Iwasawa invariants [Ph.D. thesis], ProQuest LLC, Ann Arbor, Mich, USA, Princeton University, Princeton, NJ, USA, 1971.
  12. B. Ferrero, “The cyclotomic Z2-extension of imaginary quadratic fields,” The American Journal of Mathematics, vol. 102, no. 3, pp. 447–459, 1980. View at Publisher · View at Google Scholar · View at MathSciNet
  13. Y. Kida, “On cyclotomic Z2-extensions of imaginary quadratic fields,” Tohoku Mathematical Journal, vol. 31, no. 1, pp. 91–96, 1979. View at Publisher · View at Google Scholar · View at MathSciNet
  14. W. M. Sinnott, “On p-adic L-functions and the Riemann-Hurwitz genus formula,” Compositio Mathematica, vol. 53, no. 1, pp. 3–17, 1984. View at Google Scholar · View at MathSciNet
  15. Lectures on P-Adic L-Functions, Annals of Mathematics Studies, No. 74, Princeton University Press, Princeton, NJ, USA; University of Tokyo Press, Tokyo, Japan, 1972.
  16. L. Carlitz, “Arithmetic properties of generalized Bernoulli numbers,” Journal für die Reine und Angewandte Mathematik, vol. 202, pp. 174–182, 1959. View at Google Scholar · View at MathSciNet
  17. D. S. Dummit, D. Ford, H. Kisilevsky, and J. W. Sands, “Computation of Iwasawa lambda invariants for imaginary quadratic fields,” Journal of Number Theory, vol. 37, no. 1, pp. 100–121, 1991. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet