Table of Contents Author Guidelines Submit a Manuscript
Journal of Nucleic Acids
Volume 2012, Article ID 639062, 14 pages
http://dx.doi.org/10.1155/2012/639062
Review Article

Alternative Splicing in Oncogenic Kinases: From Physiological Functions to Cancer

1Institut Curie, 91405 Orsay, France
2INSERM U1021, Centre Universitaire, 91405 Orsay, France
3CNRS UMR 3347, Centre Universitaire, 91405 Orsay, France

Received 30 May 2011; Accepted 14 July 2011

Academic Editor: Giuseppe Biamonti

Copyright © 2012 Sabine Druillennec et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Manning, D. B. Whyte, R. Martinez, T. Hunter, and S. Sudarsanam, “The protein kinase complement of the human genome,” Science, vol. 298, no. 5600, pp. 1912–1934, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Anamika, N. Garnier, and N. Srinivasan, “Functional diversity of human protein kinase splice variants marks significant expansion of human kinome,” BMC Genomics, vol. 10, article 622, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Hunter, “A thousand and one protein kinases,” Cell, vol. 50, no. 6, pp. 823–829, 1987. View at Google Scholar · View at Scopus
  4. D. Stehelin, H. E. Varmus, J. M. Bishop, and P. K. Vogt, “DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA,” Nature, vol. 260, no. 5547, pp. 170–173, 1976. View at Google Scholar · View at Scopus
  5. J. Zhang, P. L. Yang, and N. S. Gray, “Targeting cancer with small molecule kinase inhibitors,” Nature Reviews Cancer, vol. 9, no. 1, pp. 28–39, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. K. T. Flaherty, F. S. Hodi, and B. C. Bastian, “Mutation-driven drug development in melanoma,” Current Opinion in Oncology, vol. 22, no. 3, pp. 178–183, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. I. Vivanco and I. K. Mellinghoff, “Epidermal growth factor receptor inhibitors in oncology,” Current Opinion in Oncology, vol. 22, no. 6, pp. 573–578, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Ghigna, C. Valacca, and G. Biamonti, “Alternative splicing and tumor progression,” Current Genomics, vol. 9, no. 8, pp. 556–570, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Toutant, A. Costa, J. M. Studler, G. Kadaré, M. Carnaud, and J. A. Girault, “Alternative splicing controls the mechanisms of FAK autophosphorylation,” Molecular and Cellular Biology, vol. 22, no. 22, pp. 7731–7743, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Papin, A. Denouel-Galy, D. Laugier, G. Calothy, and A. Eychène, “Modulation of kinase activity and oncogenic properties by alternative splicing reveals a novel regulatory mechanism for B-Raf,” Journal of Biological Chemistry, vol. 273, no. 38, pp. 24939–24947, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. I. Hmitou, S. Druillennec, A. Valluet, C. Peyssonnaux, and A. Eychène, “Differential regulation of B-Raf isoforms by phosphorylation and autoinhibitory mechanisms,” Molecular and Cellular Biology, vol. 27, no. 1, pp. 31–43, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Peyssonnaux and A. Eychène, “The Raf/MEK/ERK pathway: new concepts of activation,” Biology of the Cell, vol. 93, no. 1-2, pp. 53–62, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Brignatz, M. P. Paronetto, S. Opi et al., “Alternative splicing modulates autoinhibition and SH3 accessibility in the Src kinase Fyn,” Molecular and Cellular Biology, vol. 29, no. 24, pp. 6438–6448, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Rossel, A. Pasini, S. Chappuis et al., “Distinct biological properties of two RET isoforms activated by MEN 2A and MEN 2B mutations,” Oncogene, vol. 14, no. 3, pp. 265–275, 1997. View at Google Scholar · View at Scopus
  15. M. J. Lorenzo, G. D. Gish, C. Houghton et al., “RET alternate splicing influences the interaction of activated RET with the SH2 and PTB domains of Shc, and the SH2 domain of Grb2,” Oncogene, vol. 14, no. 7, pp. 763–771, 1997. View at Google Scholar · View at Scopus
  16. Y. Ishiguro, T. Iwashita, H. Murakami et al., “The role of amino acids surrounding tyrosine 1062 in ret in specific binding of the Shc phosphotyrosine-binding domain,” Endocrinology, vol. 140, no. 9, pp. 3992–3998, 1999. View at Google Scholar · View at Scopus
  17. R. P. Scott, S. Eketjäll, H. Aineskog, and C. F. Ibáñez, “Distinct turnover of alternatively spliced isoforms of the RET kinase receptor mediated by differential recruitment of the Cbl ubiquitin ligase,” Journal of Biological Chemistry, vol. 280, no. 14, pp. 13442–13449, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Elenius, C. J. Choi, S. Paul, E. Santiestevan, E. Nishi, and M. Klagsbrun, “Characterization of a naturally occurring ErbB4 isoform that does not bind or activate phosphatidyl inositol 3-kinase,” Oncogene, vol. 18, no. 16, pp. 2607–2615, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Sundvall, A. Korhonen, I. Paatero et al., “Isoform-specific monoubiquitination, endocytosis, and degradation of alternatively spliced ErbB4 isoforms,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 11, pp. 4162–4167, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Elenius, G. Corfas, S. Paul et al., “A novel juxtamembrane domain isoform of HER4/ErbB4. Isoform-specific tissue distribution and differential processing in response to phorbol ester,” Journal of Biological Chemistry, vol. 272, no. 42, pp. 26761–26768, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. X. Zhang, O. A. Ibrahimi, S. K. Olsen, H. Umemori, M. Mohammadi, and D. M. Ornitz, “Receptor specificity of the fibroblast growth factor family: the complete mammalian FGF family,” Journal of Biological Chemistry, vol. 281, no. 23, pp. 15694–15700, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. V. P. Eswarakumar, I. Lax, and J. Schlessinger, “Cellular signaling by fibroblast growth factor receptors,” Cytokine and Growth Factor Reviews, vol. 16, no. 2, pp. 139–149, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Yokoyama, K. Takano, A. Yoshida et al., “DA-Raf1, a competent intrinsic dominant-negative antagonist of the Ras-ERK pathway, is required for myogenic differentiation,” Journal of Cell Biology, vol. 177, no. 5, pp. 781–793, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Rauch, K. Moran-Jones, V. Albrecht et al., “c-Myc regulates RNA splicing of the A-Raf kinase and its activation of the ERK pathway,” Cancer Research, vol. 71, no. 13, pp. 4664–4674, 2011. View at Publisher · View at Google Scholar
  25. E. J. Huang and L. F. Reichardt, “Trk receptors: roles in neuronal signal transduction,” Annual Review of Biochemistry, vol. 72, pp. 609–642, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Luberg, J. Wong, C. S. Weickert, and T. Timmusk, “Human TrkB gene: novel alternative transcripts, protein isoforms and expression pattern in the prefrontal cerebral cortex during postnatal development,” Journal of Neurochemistry, vol. 113, no. 4, pp. 952–964, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. G. T. Baxter, M. J. Radeke, R. C. Kuo et al., “Signal transduction mediated by the truncated trkB receptor isoforms, trkB.T1 and trkB.T2,” Journal of Neuroscience, vol. 17, no. 8, pp. 2683–2690, 1997. View at Google Scholar · View at Scopus
  28. C. R. Rose, R. Blum, B. Pichler, A. Lepier, K. W. Kafitz, and A. Konnerth, “Truncated TrkB-T1 mediates neurotrophin-evoked calcium signalling in glia cells,” Nature, vol. 426, no. 6962, pp. 74–78, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Ohira, H. Kumanogoh, Y. Sahara et al., “A truncated tropo-myosine-related kinase B receptor, T1, regulates glial cell morphology via Rho GDP dissociation inhibitor,” Journal of Neuroscience, vol. 25, no. 6, pp. 1343–1353, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. L. M. Ellis and D. J. Hicklin, “VEGF-targeted therapy: mechanisms of anti-tumour activity,” Nature Reviews Cancer, vol. 8, no. 8, pp. 579–591, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Lohela, M. Bry, T. Tammela, and K. Alitalo, “VEGFs and receptors involved in angiogenesis versus lymphangiogenesis,” Current Opinion in Cell Biology, vol. 21, no. 2, pp. 154–165, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. R. L. Kendall and K. A. Thomas, “Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 22, pp. 10705–10709, 1993. View at Publisher · View at Google Scholar · View at Scopus
  33. R. J. C. Albuquerque, T. Hayashi, W. G. Cho et al., “Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth,” Nature Medicine, vol. 15, no. 9, pp. 1023–1030, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. J. M. L. Ebos, G. Bocci, S. Man et al., “A naturally occurring soluble form of vascular endothelial growth factor receptor 2 detected in mouse and human plasma,” Molecular Cancer Research, vol. 2, no. 6, pp. 315–326, 2004. View at Google Scholar · View at Scopus
  35. L. De Moerlooze, B. Spencer-Dene, J. M. Revest, M. Hajihosseini, I. Rosewell, and C. Dickson, “An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis,” Development, vol. 127, no. 3, pp. 483–492, 2000. View at Google Scholar · View at Scopus
  36. V. P. Eswarakumar, E. Monsonego-Ornan, M. Pines, I. Antonopoulou, G. M. Morriss-Kay, and P. Lonai, “The IIIc alternative of Fgfr2 is a positive regulator of bone formation,” Development, vol. 129, no. 16, pp. 3783–3793, 2002. View at Google Scholar · View at Scopus
  37. J. M. Revest, B. Spencer-Dene, K. Kerr, L. De Moerlooze, I. Rosewell, and C. Dickson, “Fibroblast growth factor receptor 2-IIIb acts upstream of Shh and Fgf4 and is required for limb bud maintenance but not for the induction of Fgf8, Fgf10, Msx1, or Bmp4,” Developmental Biology, vol. 231, no. 1, pp. 47–62, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. M. K. Hajihosseini, S. Wilson, L. De Moerlooze, and C. Dickson, “A splicing switch and gain-of-function mutation in FgfR2-IIIc hemizygotes causes Apert/Pfeiffersyndrome-like phenotypes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 7, pp. 3855–3860, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. E. De Graaff, S. Srinivas, C. Kilkenny et al., “Differential activities of the RET tyrosine kinase receptor isoforms during mammalian embryogenesis,” Genes and Development, vol. 15, no. 18, pp. 2433–2444, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Wong, S. Bogni, P. Kotka et al., “Phosphotyrosine 1062 is critical for the in vivo activity of the Ret9 receptor tyrosine kinase isoform,” Molecular and Cellular Biology, vol. 25, no. 21, pp. 9661–9673, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. S. J. Fuller, K. Sivarajah, and P. H. Sugden, “ErbB receptors, their ligands, and the consequences of their activation and inhibition in the myocardium,” Journal of Molecular and Cellular Cardiology, vol. 44, no. 5, pp. 831–854, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. R. S. Muraoka-Cook, M. A. Sandahl, K. E. Strunk et al., “ErbB4 splice variants Cyt1 and Cyt2 differ by 16 amino acids and exert opposing effects on the mammary epithelium in vivo,” Molecular and Cellular Biology, vol. 29, no. 18, pp. 4935–4948, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. J. B. Kearney, N. C. Kappas, C. Ellerstrom, F. W. DiPaola, and V. L. Bautch, “The VEGF receptor flt-1 (VEGFR-1) is a positive modulator of vascular sprout formation and branching morphogenesis,” Blood, vol. 103, no. 12, pp. 4527–4535, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. B. K. Ambati, M. Nozaki, N. Singh et al., “Corneal avascularity is due to soluble VEGF receptor-1,” Nature, vol. 443, no. 7114, pp. 993–997, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. T. Saarelainen, R. Pussinen, E. Koponen et al., “Transgenic mice overexpressing truncated trkB neurotrophin receptors in neurons have impaired long-term spatial memory but normal hippocampal LTP,” Synapse, vol. 38, no. 1, pp. 102–104, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. T. Saarelainen, J. A. Lukkarinen, S. Koponen et al., “Transgenic mice overexpressing truncated trkB neurotrophin receptors in neurons show increased susceptibility to cortical injury after focal cerebral ischemia,” Molecular and Cellular Neurosciences, vol. 16, no. 2, pp. 87–96, 2000. View at Google Scholar · View at Scopus
  47. M. Korte, P. Carroll, E. Wolf, G. Brem, H. Thoenen, and T. Bonhoeffer, “Hippocampal long-term potentiation is impaired in mice lacking brain- derived neurotrophic factor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 19, pp. 8856–8860, 1995. View at Publisher · View at Google Scholar · View at Scopus
  48. S. G. Dorsey, C. L. Renn, L. Carim-Todd et al., “In vivo restoration of physiological levels of truncated TrkB.T1 receptor rescues neuronal cell death in a trisomic mouse model,” Neuron, vol. 51, no. 1, pp. 21–28, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. L. Carim-Todd, K. G. Bath, G. Fulgenzi et al., “Endogenous truncated TrkB.T1 receptor regulates neuronal complexity and TrkB kinase receptor function in vivo,” Journal of Neuroscience, vol. 29, no. 3, pp. 678–685, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. J. V. Barnier, C. Papin, A. Eychene, O. Lecoq, and G. Calothy, “The mouse B-raf gene encodes multiple protein isoforms with tissue- specific expression,” Journal of Biological Chemistry, vol. 270, no. 40, pp. 23381–23389, 1995. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Eychene, I. Dusanter-Fourt, J. V. Barnier et al., “Expression and activation of B-raf kinase isoforms in human and murine leukemia cell lines,” Oncogene, vol. 10, no. 6, pp. 1159–1165, 1995. View at Google Scholar · View at Scopus
  52. A. Valluet, I. Hmitou, S. Davis et al., “B-raf alternative splicing is dispensable for development but required for learning and memory associated with the hippocampus in the adult mouse,” PLoS ONE, vol. 5, no. 12, article e15272, 2010. View at Publisher · View at Google Scholar
  53. G. Yan, Y. Fukabori, G. McBride, S. Nikolaropolous, and W. L. McKeehan, “Exon switching and activation of stromal and embryonic fibroblast growth factor (FGF)-FGF receptor genes in prostate epithelial cells accompany stromal independence and malignancy,” Molecular and Cellular Biology, vol. 13, no. 8, pp. 4513–4522, 1993. View at Google Scholar · View at Scopus
  54. A. B. Moffa, S. L. Tannheimer, and S. P. Ethier, “Transforming potential of alternatively spliced variants of fibroblast growth factor receptor 2 in human mammary epithelial cells,” Molecular Cancer Research, vol. 2, no. 11, pp. 643–652, 2004. View at Google Scholar · View at Scopus
  55. J. Y. Cha, Q. T. Lambert, G. W. Reuther, and C. J. Der, “Involvement of fibroblast growth factor receptor 2 isoform switching in mammary oncogenesis,” Molecular Cancer Research, vol. 6, no. 3, pp. 435–445, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. H. Itoh, Y. Hattori, H. Sakamoto et al., “Preferential alternative splicing in cancer generates a K-sam messenger RNA with higher transforming activity,” Cancer Research, vol. 54, no. 12, pp. 3237–3241, 1994. View at Google Scholar · View at Scopus
  57. N. Turner and R. Grose, “Fibroblast growth factor signalling: from development to cancer,” Nature Reviews Cancer, vol. 10, no. 2, pp. 116–129, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. D. E. Johnson, J. Lu, H. Chen, S. Werner, and L. T. Williams, “The human fibroblast growth factor receptor genes: a common structural arrangement underlies the mechanisms for generating receptor forms that differ in their third immunoglobulin domain,” Molecular and Cellular Biology, vol. 11, no. 9, pp. 4627–4634, 1991. View at Google Scholar · View at Scopus
  59. E. Shi, M. Kan, J. Xu, F. Wang, J. Hou, and W. L. McKeehan, “Control of fibroblast growth factor receptor kinase signal transduction by heterodimerization of combinatorial splice variants,” Molecular and Cellular Biology, vol. 13, no. 7, pp. 3907–3918, 1993. View at Google Scholar · View at Scopus
  60. F. Wang, M. Kan, G. Yan, J. Xu, and W. L. McKeehan, “Alternately spliced NH2-terminal immunoglobulin-like loop I in the ectodomain of the fibroblast growth factor (FGF) receptor 1 lowers affinity for both heparin and FGF-1,” Journal of Biological Chemistry, vol. 270, no. 17, pp. 10231–10235, 1995. View at Publisher · View at Google Scholar · View at Scopus
  61. S. M. Vickers, Z. Q. Huang, L. MacMillan-Crow, J. S. Greendorfer, and J. A. Thompson, “Ligand activation of alternatively spliced fibroblast growth factor receptor-1 modulates pancreatic adenocarcinoma cell malignancy,” Journal of Gastrointestinal Surgery, vol. 6, no. 4, pp. 546–553, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. Y. A. Luqmani, C. Mortimer, C. Yiangou et al., “Expression of 2 variant forms of fibroblast growth factor receptor 1 in human breast,” International Journal of Cancer, vol. 64, no. 4, pp. 274–279, 1995. View at Publisher · View at Google Scholar · View at Scopus
  63. F. Yamaguchi, H. Saya, J. M. Bruner, and R. S. Morrison, “Differential expression of two fibroblast growth factor-receptor genes is associated with malignant progression in human astrocytomas,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 2, pp. 484–488, 1994. View at Google Scholar · View at Scopus
  64. D. C. Tomlinson and M. A. Knowles, “Altered splicing of FGFR1 is associated with high tumor grade and stage and leads to increased sensitivity to FGF1 in bladder cancer,” The American Journal of Pathology, vol. 177, no. 5, pp. 2379–2386, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. D. J. Slamon, G. M. Clark, S. G. Wong, W. J. Levin, A. Ullrich, and W. L. McGuire, “Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene,” Science, vol. 235, no. 4785, pp. 177–182, 1987. View at Google Scholar · View at Scopus
  66. K. Y. Kwong and M. C. Hung, “A novel splice variant of HER2 with increased transformation activity,” Molecular Carcinogenesis, vol. 23, no. 2, pp. 62–68, 1998. View at Publisher · View at Google Scholar · View at Scopus
  67. T. P. J. Garrett, N. M. McKern, M. Lou et al., “The crystal structure of a truncated ErbB2 ectodomain reveals an active conformation, poised to interact with other ErbB receptors,” Molecular Cell, vol. 11, no. 2, pp. 495–505, 2003. View at Publisher · View at Google Scholar · View at Scopus
  68. F. Castiglioni, E. Tagliabue, M. Campiglio, S. M. Pupa, A. Balsari, and S. Ménard, “Role of exon-16-deleted HER2 in breast carcinomas,” Endocrine-Related Cancer, vol. 13, no. 1, pp. 221–232, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. L. Zhongkui, C. Zhe, L. J. Chiao et al., “TrkBT1 induces liver metastasis of pancreatic cancer cells by sequestering Rho GDP dissociation inhibitor and promoting RhoA activation,” Cancer Research, vol. 69, no. 19, pp. 7851–7859, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. S. O. Shin, K. H. Lee, J. H. Kim et al., “Alternative splicing in 5′-untranslational region of STK-15 gene, encoding centrosome associated kinase, in breast cancer cell lines,” Experimental and Molecular Medicine, vol. 32, no. 4, pp. 193–196, 2000. View at Google Scholar · View at Scopus
  71. C. H. Lai, J. T. Tseng, Y. C. Lee et al., “Translational up-regulation of Aurora-A in EGFR-overexpressed cancer,” Journal of Cellular and Molecular Medicine, vol. 14, no. 6, pp. 1520–1531, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. A. Sistayanarain, K. Tsuneyama, H. Zheng et al., “Expression of Aurora-B kinase and phosphorylated histone H3 in hepatocellular carcinoma,” Anticancer Research, vol. 26, no. 5, pp. 3585–3593, 2006. View at Google Scholar · View at Scopus
  73. T. S. Lee, W. Ma, X. Zhang et al., “BCR-ABL alternative splicing as a common mechanism for imatinib resistance: evidence from molecular dynamics simulations,” Molecular Cancer Therapeutics, vol. 7, no. 12, pp. 3834–3841, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. J. Laudadio, M. W. N. Deininger, M. J. Mauro, B. J. Druker, and R. D. Press, “An intron-derived insertion/truncation mutation in the BCR-ABL kinase domain in chronic myeloid leukemia patients undergoing kinase inhibitor therapy,” Journal of Molecular Diagnostics, vol. 10, no. 2, pp. 177–180, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. F. X. Gruber, H. Hjorth-Hansen, I. Mikkola, L. Stenke, and T. Johansen, “A novel Bcr-Abl splice isoform is associated with the L248V mutation in CML patients with acquired resistance to imatinib,” Leukemia, vol. 20, no. 11, pp. 2057–2060, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. D. W. Sherbenou, O. Hantschel, L. Turaga et al., “Characterization of BCR-ABL deletion mutants from patients with chronic myeloid leukemia,” Leukemia, vol. 22, no. 6, pp. 1184–1190, 2008. View at Publisher · View at Google Scholar · View at Scopus
  77. J. S. Khorashad, D. Milojkovic, and A. G. Reid, “Variant isoforms of BCR-ABL1 in chronic myelogenous leukemia reflect alternative splicing of ABL1 in normal tissue,” Molecular Cancer Therapeutics, vol. 9, no. 7, p. 2152, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. I. Santamaria, A. S. Pitiot, and M. Balbin, “ABL alternative splicing is quite frequent in normal population,” Molecular Cancer Therapeutics, vol. 9, no. 3, p. 772, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. N. B. Quigley, D. C. Henley, and R. A. Hubbard, “ABL kinase domain pseudoexon insertion is not uncommon in BCR-ABL transcripts,” Journal of Molecular Diagnostics, vol. 10, no. 5, pp. 475–476, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. K. J. Morgan and D. G. Gilliland, “A role for JAK2 mutations in myeloproliferative diseases,” Annual Review of Medicine, vol. 59, pp. 213–222, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. E. J. Baxter, L. M. Scott, P. J. Campbell et al., “Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders,” The Lancet, vol. 365, no. 9464, pp. 1054–1061, 2005. View at Publisher · View at Google Scholar · View at Scopus
  82. R. Kralovics, F. Passamonti, A. S. Buser et al., “A gain-of-function mutation of JAK2 in myeloproliferative disorders,” The New England Journal of Medicine, vol. 352, no. 17, pp. 1779–1790, 2005. View at Publisher · View at Google Scholar · View at Scopus
  83. M. Wanlong, H. Kantarjian, X. Zhang et al., “Mutation profile of JAK2 transcripts in patients with chronic myeloproliferative neoplasias,” Journal of Molecular Diagnostics, vol. 11, no. 1, pp. 49–53, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. W. Ma, H. Kantarjian, X. Zhang et al., “JAK2 exon 14 deletion in patients with chronic myeloproliferative neoplasms,” PLoS ONE, vol. 5, no. 8, article e12165, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. P. S. Crosier, S. T. Ricciardi, L. R. Hall, M. R. Vitas, S. C. Clark, and K. E. Crosier, “Expression of isoforms of the human receptor tyrosine kinase c-kit in leukemic cell lines and acute myeloid leukemia,” Blood, vol. 82, no. 4, pp. 1151–1158, 1993. View at Google Scholar · View at Scopus
  86. W. M. Zhu, W. F. Dong, and M. Minden, “Alternate splicing creates two forms of the human kit protein,” Leukemia and Lymphoma, vol. 12, no. 5-6, pp. 441–447, 1994. View at Google Scholar · View at Scopus
  87. C. L. Corless, L. McGreevey, A. Town et al., “KIT gene deletions at the intron 10-exon 11 boundary in GI stromal tumors,” Journal of Molecular Diagnostics, vol. 6, no. 4, pp. 366–370, 2004. View at Google Scholar · View at Scopus
  88. L. L. Chen, M. Sabripour, E. F. Wu, V. G. Prieto, G. N. Fuller, and M. L. Frazier, “A mutation-created novel intra-exonic pre-mRNA splice site causes constitutive activation of KIT in human gastrointestinal stromal tumors,” Oncogene, vol. 24, no. 26, pp. 4271–4280, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. L. Schmidt, F. -M. Duh, F. Chen et al., “Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas,” Nature Genetics, vol. 16, no. 1, pp. 68–73, 1997. View at Google Scholar
  90. C. C. Lee and K. M. Yamada, “Identification of a novel type of alternative splicing of a tyrosine kinase receptor. Juxtamembrane deletion of the c-met protein kinase C serine phosphorylation regulatory site,” Journal of Biological Chemistry, vol. 269, no. 30, pp. 19457–19461, 1994. View at Google Scholar · View at Scopus
  91. P. C. Ma, R. Jagadeeswaran, S. Jagadeesh et al., “Functional expression and mutations of c-Met and its therapeutic inhibition with SU11274 and small interfering RNA in non-small cell lung cancer,” Cancer Research, vol. 65, no. 4, pp. 1479–1488, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. M. Kong-Beltran, S. Seshagiri, J. Zha et al., “Somatic mutations lead to an oncogenic deletion of Met in lung cancer,” Cancer Research, vol. 66, no. 1, pp. 283–289, 2006. View at Publisher · View at Google Scholar · View at Scopus
  93. R. Onozato, T. Kosaka, H. Kuwano, Y. Sekido, Y. Yatabe, and T. Mitsudomi, “Activation of MET by gene amplification or by splice mutations deleting the juxtamembrane domain in primary resected lung cancers,” Journal of Thoracic Oncology, vol. 4, no. 1, pp. 5–11, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. Y. Asaoka, M. Tada, T. Ikenoue et al., “Gastric cancer cell line Hs746T harbors a splice site mutation of c-Met causing juxtamembrane domain deletion,” Biochemical and Biophysical Research Communications, vol. 394, no. 4, pp. 1042–1046, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. J. H. Lee, F. G. Chong, C. L. Chong, D. K. Myung, and G. F. V. Woude, “An alternatively spliced form of Met receptor is tumorigenic,” Experimental and Molecular Medicine, vol. 38, no. 5, pp. 565–573, 2006. View at Google Scholar · View at Scopus
  96. Y. Lu, H. P. Yao, and M. H. Wang, “Multiple variants of the RON receptor tyrosine kinase: biochemical properties, tumorigenic activities, and potential drug targets,” Cancer Letters, vol. 257, no. 2, pp. 157–164, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. C. Collesi, M. M. Santoro, G. Gaudino, and P. M. Comoglio, “A splicing variant of the RON transcript induces constitutive tyrosine kinase activity and an invasive phenotype,” Molecular and Cellular Biology, vol. 16, no. 10, pp. 5518–5526, 1996. View at Google Scholar · View at Scopus
  98. Y. Q. Zhou, C. He, Y. Q. Chen, D. Wang, and M. H. Wang, “Altered expression of the RON receptor tyrosine kinase in primary human colorectal adenocarcinomas: generation of different splicing RON variants and their oncogenic potential,” Oncogene, vol. 22, no. 2, pp. 186–197, 2003. View at Publisher · View at Google Scholar · View at Scopus
  99. C. Ghigna, S. Giordano, H. Shen et al., “Cell motility is controlled by SF2/ASF through alternative splicing of the Ron protooncogene,” Molecular Cell, vol. 20, no. 6, pp. 881–890, 2005. View at Publisher · View at Google Scholar · View at Scopus
  100. C. Ghigna, M. De Toledo, S. Bonomi et al., “Pro-metastatic splicing of Ron proto-oncogene mRNA can be reversed: therapeutic potential of bifunctional oligonucleotides and indole derivatives,” RNA Biology, vol. 7, no. 4, pp. 495–503, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. M. H. Wang, A. L. Kurtz, and Y. Q. Chen, “Identification of a novel splicing product of the RON receptor tyrosine kinase in human colorectal carcinoma cells,” Carcinogenesis, vol. 21, no. 8, pp. 1507–1512, 2000. View at Google Scholar · View at Scopus
  102. Y. Q. Chen, Y. Q. Zhou, D. Angeloni, A. L. Kurtz, X. Z. Qiang, and M. H. Wang, “Overexpression and activation of the RON receptor tyrosine kinase in a panel of human colorectal carcinoma cell lines,” Experimental Cell Research, vol. 261, no. 1, pp. 229–238, 2000. View at Publisher · View at Google Scholar · View at Scopus
  103. J. P. Venables, “Aberrant and alternative splicing in cancer,” Cancer Research, vol. 64, no. 21, pp. 7647–7654, 2004. View at Publisher · View at Google Scholar · View at Scopus
  104. J. P. Venables, “Unbalanced alternative splicing and its significance in cancer,” BioEssays, vol. 28, no. 4, pp. 378–386, 2006. View at Publisher · View at Google Scholar · View at Scopus
  105. P. J. Gardina, T. A. Clark, B. Shimada et al., “Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array,” BMC Genomics, vol. 7, article 325, 2006. View at Publisher · View at Google Scholar
  106. J. P. Venables, R. Klinck, A. Bramard et al., “Identification of alternative splicing markers for breast cancer,” Cancer Research, vol. 68, no. 22, pp. 9525–9531, 2008. View at Publisher · View at Google Scholar · View at Scopus
  107. R. Klinck, A. Bramard, L. Inkel et al., “Multiple alternative splicing markers for ovarian cancer,” Cancer Research, vol. 68, no. 3, pp. 657–663, 2008. View at Publisher · View at Google Scholar · View at Scopus
  108. H. C. Cheung, K. A. Baggerly, S. Tsavachidis et al., “Global analysis of aberrant pre-mRNA splicing in glioblastoma using exon expression arrays,” BMC Genomics, vol. 9, article 216, 2008. View at Publisher · View at Google Scholar
  109. K. Thorsen, K. D. Sørensen, A. Brems-Eskildsen et al., “Alternative splicing in colon, bladder, and prostate cancer identified by exon array analysis,” Molecular and Cellular Proteomics, vol. 7, no. 7, pp. 1214–1224, 2008. View at Publisher · View at Google Scholar · View at Scopus
  110. L. Xi, A. Feber, V. Gupta et al., “Whole genome exon arrays identify differential expression of alternatively spliced, cancer-related genes in lung cancer,” Nucleic Acids Research, vol. 36, no. 20, pp. 6535–6547, 2008. View at Publisher · View at Google Scholar · View at Scopus
  111. P. Prinos, D. Garneau, J.-F. Lucier et al., “Alternative splicing of SYK regulates mitosis and cell survival,” Nature Structural and Molecular Biology, vol. 18, no. 6, pp. 673–679, 2011. View at Publisher · View at Google Scholar