Table of Contents Author Guidelines Submit a Manuscript
Journal of Nucleic Acids
Volume 2013, Article ID 629218, 7 pages
http://dx.doi.org/10.1155/2013/629218
Research Article

R-Loop Formation In Trans at an AGGAG Repeat

1Department of Life Science and Research Center for Life Science, Rikkyo (St. Paul’s) University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
2Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kami-Kitazawa, Setagaya-ku, Tokyo 156-8506, Japan

Received 29 May 2013; Accepted 25 July 2013

Academic Editor: Luis A. Marky

Copyright © 2013 Kazuya Toriumi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. P. Richardson, “Attachment of nascent RNA molecules to superhelical DNA,” Journal of Molecular Biology, vol. 98, no. 3, pp. 565–579, 1975. View at Google Scholar · View at Scopus
  2. M. Jiang, N. Ma, D. G. Vassylyev, and W. T. McAllister, “RNA displacement and resolution of the transcription bubble during transcription by R7 RNA polymerase,” Molecular Cell, vol. 15, no. 5, pp. 777–788, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. W. Yin and T. A. Steitz, “Structural basis for the transition from initiation to elongation transcription in T7 RNA polymerase,” Science, vol. 298, no. 5597, pp. 1387–1395, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. T. H. Tahlrov, D. Temiakov, M. Anikin et al., “Structure of a T7 RNA polymerase elongation complex at 2.9 Å resolution,” Nature, vol. 420, no. 6911, pp. 43–50, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Naryshkina, K. Kuznedelov, and K. Severinov, “The role of the largest RNA polymerase subunit lid element in preventing the formation of extended RNA-DNA hybrid,” Journal of Molecular Biology, vol. 361, no. 4, pp. 634–643, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. I. Toulokhonov and R. Landick, “The role of the lid element in transcription by E. coli RNA polymerase,” Journal of Molecular Biology, vol. 361, no. 4, pp. 644–658, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Aguilera and T. García-Muse, “R loops: from transcription byproducts to threats to genome stability,” Molecular Cell, vol. 46, no. 2, pp. 115–124, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Masukata and J.-I. Tomizawa, “A mechanism of formation of a persistent hybrid between elongating RNA and template DNA,” Cell, vol. 62, no. 2, pp. 331–338, 1990. View at Publisher · View at Google Scholar · View at Scopus
  9. Q. Sun, T. Csorba, K. Skourti-stathaki, N. J. Proudfoot, and C. Dean, “R-loop stabilization represses antisense transcription at the Arabidopsis FLC locus,” Science, vol. 340, no. 6132, pp. 619–621, 2013. View at Google Scholar
  10. P. Huertas and A. Aguilera, “Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination,” Molecular Cell, vol. 12, no. 3, pp. 711–721, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. M. E. Reaban and J. A. Griffin, “Induction of RNA-stabilized DNA conformers by transcription of an immunoglobulin switch region,” Nature, vol. 348, no. 6299, pp. 342–344, 1990. View at Publisher · View at Google Scholar · View at Scopus
  12. M. E. Reaban, J. Lebowitz, and J. A. Griffin, “Transcription induces the formation of a stable RNA·DNA hybrid in the immunoglobulin α switch region,” Journal of Biological Chemistry, vol. 269, no. 34, pp. 21850–21857, 1994. View at Google Scholar · View at Scopus
  13. G. A. Daniels and M. R. Lieber, “RNA:DNA complex formation upon transcription of immunoglobulin switch regions: implications for the mechanism and regulation of class switch recombination,” Nucleic Acids Research, vol. 23, no. 24, pp. 5006–5011, 1995. View at Google Scholar · View at Scopus
  14. K. Kinoshita, J. Tashiro, S. Tomita, C.-G. Lee, and T. Honjo, “Target specificity of immunoglobulin class switch recombination is not determined by nucleotide sequences of S regions,” Immunity, vol. 9, no. 6, pp. 849–858, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Yu, F. Chedin, C.-L. Hsieh, T. E. Wilson, and M. R. Lieber, “R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells,” Nature Immunology, vol. 4, no. 5, pp. 442–451, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Shinkura, M. Tian, M. Smith, K. Chua, Y. Fujiwara, and F. W. Alt, “The influence of transcriptional orientation on endogenous switch region function,” Nature Immunology, vol. 4, no. 5, pp. 435–441, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Takahashi, N. Sasagawa, K. Suzuki, and S. Ishiura, “Synthesis of long trinucleotide repeats in vitro,” Neuroscience Letters, vol. 262, no. 1, pp. 45–48, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. P. T. Chan and J. Lebowitz, “Site-directed mutagenesis of the -10 region of the lacUV5 promoter. Introduction of dA4·dT4 tract suppresses open complex formation,” Journal of Biological Chemistry, vol. 265, no. 7, pp. 4091–4097, 1990. View at Google Scholar · View at Scopus
  19. J. Sambrook and D. W. Russel, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA, 3rd edition, 2001.
  20. S. Shuman, M. Golder, and B. Moss, “Characterization of vaccinia virus DNA topoisomerase I expressed in Escherichia coli,” Journal of Biological Chemistry, vol. 263, no. 31, pp. 16401–16407, 1988. View at Google Scholar · View at Scopus
  21. S. Sasse-Dwight and J. D. Gralla, “Footprinting protein-DNA complexes in vivo,” Methods in Enzymology, vol. 208, pp. 146–168, 1991. View at Google Scholar · View at Scopus
  22. T. Kohwi-Shigematsu and Y. Kohwi, “Detection of non-B-DNA structures at specific sites in supercoiled plasmid DNA and chromatin with haloacetaldehyde and diethyl pyrocarbonate,” Methods in Enzymology, vol. 212, pp. 155–180, 1992. View at Publisher · View at Google Scholar · View at Scopus
  23. M. L. Duquette, P. Handa, J. A. Vincent, A. F. Taylor, and N. Maizels, “Intracellular transcription of G-rich DNAs induces formation of G-loops, novel structures containing G4 DNA,” Genes and Development, vol. 18, no. 13, pp. 1618–1629, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Komissarova and M. Kashlev, “RNA polymerase switches between inactivated and activated states by translocating back and forth along the DNA and the RNA,” Journal of Biological Chemistry, vol. 272, no. 24, pp. 15329–15338, 1997. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Korzheva, A. Mustaev, E. Nudler, V. Nikiforov, and A. Goldfarb, “Mechanistic model of the elongation complex of Eschericha coli RNA Polymerase,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 63, pp. 337–345, 1998. View at Google Scholar · View at Scopus
  26. D. A. Collier, J. A. Griffin, and R. D. Wells, “Non-B right-handed DNA conformations of homopurine·homopyrimidine sequences in the murine immunoglobulin Cα switch region,” Journal of Biological Chemistry, vol. 263, no. 15, pp. 7397–7405, 1988. View at Google Scholar · View at Scopus
  27. S. M. Mirkin and M. D. Frank-Kamenetskii, “H-DNA and related structures,” Annual Review of Biophysics and Biomolecular Structure, vol. 23, pp. 541–576, 1994. View at Google Scholar · View at Scopus
  28. M. D. Frank-Kamenetskii and S. M. Mirkin, “Triplex DNA structures,” Annual Review of Biochemistry, vol. 64, pp. 65–95, 1995. View at Google Scholar · View at Scopus
  29. S. Burge, G. N. Parkinson, P. Hazel, A. K. Todd, and S. Neidle, “Quadruplex DNA: sequence, topology and structure,” Nucleic Acids Research, vol. 34, no. 19, pp. 5402–5415, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Grabczyk, M. Mancuso, and M. C. Sammarco, “A persistent RNA·DNA hybrid formed by transcription of the Friedreich ataxia triplet repeat in live bacteria, and by T7 RNAP in vitro,” Nucleic Acids Research, vol. 35, no. 16, pp. 5351–5359, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Phoenix, M.-A. Raymond, É. Massé, and M. Drolet, “Roles of DNA topoisomerases in the regulation of R-loop formation in vitro,” Journal of Biological Chemistry, vol. 272, no. 3, pp. 1473–1479, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Broccoli, F. Rallu, P. Sanscartler, S. M. Cerritelli, R. J. Crouch, and M. Drolet, “Effects of RNA polymerase modifications on transcription-induced negative supercoiling and associated R-loop formation,” Molecular Microbiology, vol. 52, no. 6, pp. 1769–1779, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Roy, Z. Zhang, Z. Lu, C.-L. Hsieh, and M. R. Lieber, “Competition between the RNA transcript and the nontemplate DNA strand during R-Loop formation in vitro: a nick can serve as a strong R-loop initiation site,” Molecular and Cellular Biology, vol. 30, no. 1, pp. 146–159, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. R. W. Roberts and D. M. Crothers, “Stability and properties of double and triple helices: dramatic effects of RNA or DNA backbone composition,” Science, vol. 258, no. 5087, pp. 1463–1466, 1992. View at Google Scholar · View at Scopus
  35. H. Han and P. B. Dervan, “Sequence-specific recognition of double helical RNA and RNA·DNA by triple helix formation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 9, pp. 3806–3810, 1993. View at Google Scholar · View at Scopus