Table of Contents
Journal of Nuclear Chemistry
Volume 2014, Article ID 780640, 4 pages
http://dx.doi.org/10.1155/2014/780640
Research Article

Determination of the Iodine Content of Some Commonly Consumed Foods in Zaria Metropolis, Nigeria, Using PCNAA and Sandell-Kolthoff Reaction

1Center for Energy Research and Training, Ahmadu Bello University, Zaria, Kaduna 810261, Nigeria
2Chemistry Department, Ahmadu Bello University, Zaria, Kaduna 810261, Nigeria

Received 26 April 2014; Accepted 2 July 2014; Published 21 July 2014

Academic Editor: Ioannis Pashalidis

Copyright © 2014 T. Muhammad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. O. M. Ahmed, A. W. El-Gareib, A. M. El-bakry, S. M. Abd El-Tawab, and R. G. Ahmed, “Thyroid hormones states and brain development interactions,” International Journal of Developmental Neuroscience, vol. 26, no. 2, pp. 147–209, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. Iodine deficiency, International Council for the Control of Iodine Deficiency Disorders, 2011, http://www.iccidd.org/.
  3. S. A. Jonah, I. M. Umar, M. O. A. Oladipo, G. I. Balogun, and D. J. Adeyemo, “Standardization of NIRR-1 irradiation and counting facilities for instrumental neutron activation analysis,” Applied Radiation and Isotopes, vol. 64, no. 7, pp. 818–822, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. A. Yamusa, Y. A. Ahmed, Y. Musa, S. A. Kasim, M. Tukur, and S. Bilal, “Multi-elemental analysis of local millet and wheat by instrumental neutron activation analysis using NIRR-1 facility,” International Journal of Multidisciplinary Sciences and Engineering, vol. 4, no. 7, pp. 9–13, 2013. View at Google Scholar
  5. O. M. Trokhimenko and V. N. Zaitsev, “Kinetic determination of iodide by the Sandell-Kolthoff reaction using diphenylamine-4-sulfonic acid,” Journal of Analytical Chemistry, vol. 59, no. 5, pp. 491–494, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Gurkan, N. Bicer, M. H. Ozkan, and M. Akcay, “Determination of trace amounts of iodide by an inhibition kinetic spectrophotometric method,” Turkish Journal of Chemistry, vol. 28, pp. 181–191, 2004. View at Google Scholar
  7. M. R. Shishehbore, A. Sheibani, and R. Jokar, “Kinetic spectrophotometric determination of trace amounts of iodide in food samples,” Analytical Sciences, vol. 26, no. 4, pp. 497–501, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. J. W. Gramlich and T. J. Murphy, “Determination of trace level iodine in biological and botanical reference materials by isotope dilution mass spectrometry,” Journal of Research of the National Institute of Standards and Technology, vol. 94, no. 4, pp. 215–220, 1989. View at Publisher · View at Google Scholar · View at Scopus
  9. P. A. Fecher, I. Goldmann, and A. Nagengast, “Determination of iodine in food samples by inductively coupled plasma mass spectrometry after alkaline extraction,” Journal of Analytical Atomic Spectrometry, vol. 13, no. 9, pp. 977–982, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. J. H. Lee, O. Ji, M. Song et al., “Determination of urinary iodine concentration by inductively coupled plasma-mass spectrometry in thyroid cancer patients on low-iodine diet,” Korean Journal of Laboratory Medicine, vol. 30, no. 4, pp. 351–356, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Sato and T. Kato, “Estimates of iodine in biological materials by epithermal neutron activation analysis,” Journal of Radioanalytical Chemistry, vol. 68, no. 1-2, pp. 175–180, 1982. View at Publisher · View at Google Scholar · View at Scopus
  12. T. A. Nichols, J. S. Morris, V. L. Spate et al., “Longitudinal study of iodine in market milk and infant formula via epiboron neutron activation analysis,” Journal of Radioanalytical and Nuclear Chemistry, vol. 236, no. 1-2, pp. 65–69, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Kučera, G. V. Iyengar, Z. Řanda, and R. M. Parr, “Determination of iodine in Asian diets by epithermal and radiochemical neutron activation analysis,” Journal of Radioanalytical and Nuclear Chemistry, vol. 259, no. 1, pp. 505–509, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. W. B. Stroube Jr., W. C. Cunningham, and G. J. Lutz, “Analysis of foods for iodine by epithermal neutron activation analysis,” Journal of Radioanalytical and Nuclear Chemistry, vol. 112, no. 2, pp. 341–346, 1987. View at Publisher · View at Google Scholar · View at Scopus
  15. V. A. Maihara, P. L. C. Moura, D. I. T. Fávaro, and M. B. A. Vasconcellos, “Assessment of iodine content in Brazilian duplicate portion diets and in table salt,” Journal of Radioanalytical and Nuclear Chemistry, vol. 278, no. 2, pp. 391–393, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Chatt and R. R. Rao, “Microwave acid digestion and preconcentration neutron activation analysis of biological and diet samples for iodine,” Analytical Chemistry, vol. 63, no. 13, pp. 1298–1303, 1991. View at Publisher · View at Google Scholar · View at Scopus
  17. E. B. Sandell and I. M. Kolthoff, “Micro determination of iodine by a catalytic method,” Mikrochimica Acta, vol. 1, no. 1, pp. 9–25, 1937. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Tyndall, V. Okaye, M. Ameh et al., “Determination of iodide content of table salts in Nigeria,” European Chemical Bulletin, vol. 2, no. 6, pp. 324–327, 2013. View at Google Scholar
  19. P. W. Fischer, M. R. L'Abbé, and A. Giroux, “Colorimetric determination of total iodine in foods by iodide-catalyzed reduction of Ce+4.,” Journal - Association of Official Analytical Chemists, vol. 69, no. 4, pp. 687–689, 1986. View at Google Scholar · View at Scopus
  20. C. O. Ujowundu, F. N. Kalu, R. N. Nwaoguikpe, K. O. Igwe, R. I. Okechukwu, and T. I. N. Ezejiofor, “Salt iodization and thyroid function of pregnant women in early pregnancy in Owerri-southeast Nigeria,” International Research Journal of Biochemistry and Bioinformatics, vol. 1, no. 10, pp. 248–256, 2011. View at Google Scholar