Table of Contents
Journal of Neurodegenerative Diseases
Volume 2013, Article ID 257953, 7 pages
http://dx.doi.org/10.1155/2013/257953
Research Article

P-Glycoprotein Altered Expression in Alzheimer's Disease: Regional Anatomic Variability

1Department of Community Health Sciences, Faculty of Applied Health Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, ON, Canada L2S 3A1
2Department of Pathology & Molecular, Medicine [Neuropathology], Hamilton Health Sciences, McMaster University, Hamilton, 1280 Main Street West, Hamilton, ON, L8S4L8, Canada

Received 14 January 2013; Revised 25 February 2013; Accepted 13 March 2013

Academic Editor: Seishi Terada

Copyright © 2013 Brian Jeynes and John Provias. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. L. Bartels, R. Kortekaas, J. Bart et al., “Blood-brain barrier P-glycoprotein function decreases in specific brain regions with aging: a possible role in progressive neurodegeneration,” Neurobiology of Aging, vol. 30, no. 11, pp. 1818–1824, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. D. M. van Assema, M. Lubberink, M. Bauer et al., “Blood-brain barrier P-glycoprotein function in Alzheimer's disease,” Brain, vol. 135, part 1, pp. 181–189, 2012. View at Google Scholar
  3. G. D. Silverberg, A. A. Messier, M. C. Miller et al., “Amyloid efflux transporter expression at the blood-brain barrier declines in normal aging,” Journal of Neuropathology and Experimental Neurology, vol. 69, no. 10, pp. 1034–1043, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Alzheimer, “Ueber eine eigenartige erkrankung der hirnrinde,” Z. Gesamte Neurol Psychiatr, vol. 18, pp. 177–179, 1907. View at Google Scholar
  5. H. Braak, I. Alafuzoff, T. Arzberger, H. Kretzschmar, and K. del Tredici, “Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry,” Acta Neuropathologica, vol. 112, no. 4, pp. 389–404, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Kadir, A. Marutle, D. Gonzalez et al., “Positron emission tomography imaging and clinical progression in relation to molecular pathology in the first Pittsburgh Compound B positron emission tomography patient with Alzheimer's disease,” Brain, vol. 134, no. 1, pp. 301–317, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Braak, D. R. Thal, E. Ghebremedhin, and K. del Tredici, “Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years,” Journal of Neuropathology and Experimental Neurolology, vol. 70, no. 11, pp. 960–969, 2011. View at Google Scholar
  8. H. Braak and E. Braak, “Neuropathological stageing of Alzheimer-related changes,” Acta Neuropathologica, vol. 82, no. 4, pp. 239–259, 1991. View at Google Scholar · View at Scopus
  9. H. Braak and E. Braak, “Frequency of stages of Alzheimer-related lesions in different age categories,” Neurobiology of Aging, vol. 18, no. 4, pp. 351–357, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Braak, K. Griffing, K. Arai, J. Bohl, H. Bratzke, and H. Braak, “Neuropathology of Alzheimer's disease: what is new since A. Alzheimer?” European Archives of Psychiatry and Clinical Neuroscience, vol. 249, no. 3, pp. 14–22, 1999. View at Google Scholar · View at Scopus
  11. C. Shukla and L. R. Bridges, “Regional distribution of tau, β-amyloid and amyloid precursor protein in the Alzheimer's brain: a quantitative immunolabelling study,” NeuroReport, vol. 10, no. 18, pp. 3785–3789, 1999. View at Google Scholar · View at Scopus
  12. J. Hardy and D. J. Selkoe, “The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics,” Science, vol. 297, no. 5580, pp. 353–356, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. H. M. Wisniewski, “Neuritic (senile) and amyloid plaques,” in Alzheimer’s Disease, B. Reisberg, Ed., pp. 57–61, Free Press, New York, NY, USA, 1983. View at Google Scholar
  14. K. Luan, J. L. Rosales, and K.-Y. Lee, “Viewpoint: crosstalks between neurofibrillary tangles and amyloid plaque formation,” Aging Research Reviews, vol. 12, no. 1, pp. 174–181, 2013. View at Google Scholar
  15. L. M. Ittner and J. Götz, “Amyloid-β and tau—a toxic pas de deux in Alzheimer's disease,” Nature Reviews Neuroscience, vol. 12, no. 2, pp. 67–72, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Weiss, F. Miller, S. Cazaubon, and P.-O. Couraud, “The blood-brain barrier in brain homeostasis and neurological diseases,” Biochimica et Biophysica Acta, vol. 1788, no. 4, pp. 842–857, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. R. D. Bell and B. V. Zlokovic, “Neurovascular mechanisms and blood-brain barrier disorder in Alzheimer’s disease,” Acta Neuropatholica, vol. 118, no. 1, pp. 103–113, 2009. View at Google Scholar
  18. N. J. Abbott, A. A. K. Patabendige, D. E. M. Dolman, S. R. Yusof, and D. J. Begley, “Structure and function of the blood-brain barrier,” Neurobiology of Disease, vol. 37, no. 1, pp. 13–25, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Ueno, T. Nakagawa, B. Wu et al., “Transporters in the brain endothelial barrier,” Current Medicinal Chemistry, vol. 17, no. 12, pp. 1125–1138, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. I. Piaceri, B. Nacmias, and S. Sorbi, “Genetics of familial and sporadic Alzheimer's disease,” Frontiers in Bioscience E, vol. 5, pp. 167–177, 2013. View at Google Scholar
  21. J. Hardy, “Alzheimer’s disease: the amyloid cascade hypothesis: an update and reappraisal,” Journal of Alzheimer’s Disease, vol. 9, supplement, no. 3, pp. 151–153, 2006. View at Google Scholar
  22. R. A. Armstrong, “The pathogenesis of Alzheimer’s disease: a re-evaluation of the ‘amyloid cascade hypothesis’,” International Journal of Alzheimer’s Disease, Article ID 630865, 2011. View at Publisher · View at Google Scholar
  23. C. Reitz, “Alzheimer's disease and the amyloid cascade hypothesis: a critical review,” International Journal of Alzheimer’s Disease, vol. 2012, Article ID 369808, 11 pages, 2012. View at Publisher · View at Google Scholar
  24. T. Pflanzner, C. R. Kuhlmann, and C. U. Pietrzik, “Blood-brain barrier models for the investigation of transporter and receptor mediated amyloid-β clearance in Alzheimer’s disease,” Current Alzheimer Research, vol. 7, no. 7, pp. 578–590, 2010. View at Google Scholar
  25. B. Jeynes and J. Provias, “The case for blood-brain barrier dysfunction in the pathogenesis of Alzheimer's disease,” Journal of Neuroscience Research, vol. 89, no. 1, pp. 22–28, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. B. Jeynes and J. Provias, “Evidence for altered LRP/RAGE expression in Alzheimer lesion pathogenesis,” Current Alzheimer Research, vol. 5, no. 5, pp. 432–437, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Wolf, B. Bauer, and A. M. S. Hartz, “ABC transporters and the Alzheimer disease enigma,” Frontiers in Psychiatry, vol. 3, pp. 1–14, 2012. View at Google Scholar
  28. A. B. Reiss and I. Voloshyna, “Regulation of cerebral cholesterol metabolism in Alzheimer disease,” Journal of Investigative Medicine, vol. 60, no. 3, pp. 576–582, 2012. View at Google Scholar
  29. S. Vogelgesang, I. Cascorbi, E. Schroeder et al., “Deposition of Alzheimer's β-amyloid is inversely correlated with P-glycoprotein expression in the brains of elderly non-demented humans,” Pharmacogenetics, vol. 12, no. 7, pp. 535–541, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. A. H. Abuznait, C. Cain, D. Ingram, D. Burk, and A. Kaddoumi, “Up-regulation of P-glycoprotein reduces intracellular accumulation of beta amyloid: investigation of P-glycoprotein as a novel therapeutic target for Alzheimer's disease,” Journal of Pharmacy and Pharmacology, vol. 63, no. 8, pp. 1111–1118, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. S. S. Mirra, A. Heyman, D. McKeel et al., “The consortium to establish a registry for Alzheimer’s disease (CERAD). Part II. standardization of the neuropathologic assessment of Alzheimer’s disease,” Neurology, vol. 41, no. 4, pp. 479–486, 1991. View at Google Scholar
  32. J. R. Cirrito, R. Deane, A. M. Fagan et al., “. P-glycoprotein deficiency at the blood-brain barrier increases amyloid-beta deposition in an Alzheimer disease mouse model,” Journal of Clinical Investigation, vol. 115, no. 11, pp. 3285–3290, 2005. View at Google Scholar
  33. A. M. S. Hartz, D. S. Miller, and B. Bauer, “Restoring blood-brain barrier P-glycoprotein reduces brain amyloid-β in a mouse model of Alzheimer's disease,” Molecular Pharmacology, vol. 77, no. 5, pp. 715–723, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Bauer, R. Karch, F. Neumann et al., “Assessment of regional differences in tariquidar-induced P-glycoprotein modulation at the human blood-brain barrier,” Journal of Cerebral Blood Flow and Metabolism, vol. 30, no. 3, pp. 510–515, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Eyal, B. Ke, M. Muzi et al., “Regional P-glycoprotein activity and inhibition at the human blood-brain barrier as imaged by positron emission tomography,” Clinical Pharmacology and Therapeutics, vol. 87, no. 5, pp. 579–585, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. E. M. Reiman, Y. T. Quiroz, A. S. Feisher et al. et al., “Brain imaging and fluid biomarker analysis in young adults at genetic risk for autosomal dominant Alzheimer’s disease in the presenilin 1 E280A kindred: a case-control study,” The Lancet Neurology, vol. 11, no. 12, pp. 1048–1056, 2012. View at Google Scholar
  37. A. L. Bartels, O. L. de Klerk, R. Kortekaas, J. J. de Vries, and K. L. Leenders, “11C-verapamil to assess P-gp function in human brain during aging, depression and neurodegenerative disease,” Current Topics in Medicinal Chemistry, vol. 10, no. 17, pp. 1775–1784, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. A. L. Bartels, “Blood-brain barrier P-glycoprotein function in neurodegenerative disease,” Current Pharmaceutical Design, vol. 17, no. 26, pp. 2771–2777, 2011. View at Google Scholar
  39. S. Wood, P. H. Wen, J. Zhang et al. et al., “Establishing the relationship between in vitro potency, pharmacokinetic, and pharmacodynamics parameters in a series of orally available, hydroxyethylamine-derived β-secretase inhibitors,” Journal of Pharmacological and Experimental Therapeutics, vol. 343, pp. 460–467, 2012. View at Google Scholar
  40. A. Kurz and R. Perneczky, “Amyloid clearance as a treatment target against Alzheimer’s disease,” Journal of Alzheimer’s Disease, vol. 24, supplement 2, pp. 61–73, 2011. View at Google Scholar