Table of Contents
Journal of Neurodegenerative Diseases
Volume 2013 (2013), Article ID 407903, 12 pages
http://dx.doi.org/10.1155/2013/407903
Research Article

Increasing Membrane Cholesterol Level Increases the Amyloidogenic Peptide by Enhancing the Expression of Phospholipase C

1Department of Physiology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
2Department of Pathology, Columbia University Medical Center, New York, NY 10032, USA

Received 6 November 2012; Accepted 9 December 2012

Academic Editor: Yasuji Matsuoka

Copyright © 2013 Yoon Sun Chun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. Hardy and G. A. Higgins, “Alzheimer's disease: the amyloid cascade hypothesis,” Science, vol. 256, no. 5054, pp. 184–185, 1992. View at Google Scholar · View at Scopus
  2. J. Hardy and D. J. Selkoe, “The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics,” Science, vol. 297, no. 5580, pp. 353–356, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. D. M. Walsh and D. J. Selkoe, “Aβ oligomers—a decade of discovery,” Journal of Neurochemistry, vol. 101, no. 5, pp. 1172–1184, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Iwatsubo, A. Odaka, N. Suzuki, H. Mizusawa, N. Nukina, and Y. Ihara, “Visualization of Aβ42(43) and Aβ40 in senile plaques with end-specific Aβ monoclonals: Evidence that an initially deposited species is Aβ42(43),” Neuron, vol. 13, no. 1, pp. 45–53, 1994. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Scheuner, C. Eckman, M. Jensen et al., “Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease,” Nature Medicine, vol. 2, no. 8, pp. 864–870, 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. B. De Strooper, “Aph-1, Pen-2, and nicastrin with presenilin generate an active γ-secretase complex,” Neuron, vol. 38, no. 1, pp. 9–12, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. M. S. Wolfe, “The γ-secretase complex: membrane-embedded proteolytic ensemble,” Biochemistry, vol. 45, no. 26, pp. 7931–7939, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Bentahir, O. Nyabi, J. Verhamme et al., “Presenilin clinical mutations can affect γ-secretase activity by different mechanisms,” Journal of Neurochemistry, vol. 96, no. 3, pp. 732–742, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Di Paolo and T. W. Kim, “Erratum: linking lipids to Alzheimer's disease: cholesterol and beyond,” Nature Reviews Neuroscience, vol. 12, no. 8, p. 484, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. L. M. Refolo, M. A. Pappolla, B. Malester et al., “Hypercholesterolemia accelerates the Alzheimer's amyloid pathology in a transgenic mouse model,” Neurobiology of Disease, vol. 7, no. 4, pp. 321–331, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Kalvodova, N. Kahya, P. Schwille et al., “Lipids as modulators of proteolytic activity of BACE: involvement of cholesterol, glycosphingolipids, and anionic phospholipids in vitro,” Journal of Biological Chemistry, vol. 280, no. 44, pp. 36815–36823, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Osenkowski, W. Ye, R. Wang, M. S. Wolfe, and D. J. Selkoe, “Direct and potent regulation of γ-secretase by its lipid microenvironment,” Journal of Biological Chemistry, vol. 283, no. 33, pp. 22529–22540, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Osawa, S. Funamoto, M. Nobuhara et al., “Phosphoinositides suppress γ-secretase in both the detergent-soluble and -insoluble states,” Journal of Biological Chemistry, vol. 283, no. 28, pp. 19283–19292, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. K. S. Vetrivel and G. Thinakaran, “Membrane rafts in Alzheimer's disease β-amyloid production,” Biochimica et Biophysica Acta, vol. 1801, no. 8, pp. 860–867, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. D. R. Riddell, G. Christie, I. Hussain, and C. Dingwall, “Compartmentalization of β-secretase (Asp2) into low-buoyant density, noncaveolar lipid rafts,” Current Biology, vol. 11, no. 16, pp. 1288–1293, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Ehehalt, P. Keller, C. Haass, C. Thiele, and K. Simons, “Amyloidogenic processing of the Alzheimer β-amyloid precursor protein depends on lipid rafts,” Journal of Cell Biology, vol. 160, no. 1, pp. 113–123, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Hattori, M. Asai, H. Onishi et al., “BACE1 interacts with lipid raft proteins,” Journal of Neuroscience Research, vol. 84, no. 4, pp. 912–917, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Marquer, V. Devauges, J. C. Cossec et al., “Local cholesterol increase triggers amyloid precursor protein-bace1 clustering in lipid rafts and rapid endocytosis,” FASEB Journal, vol. 25, no. 4, pp. 1295–1305, 2011. View at Publisher · View at Google Scholar
  19. J. Abad-Rodriguez, M. D. Ledesma, K. Craessaerts et al., “Neuronal membrane cholesterol loss enhances amyloid peptide generation,” Journal of Cell Biology, vol. 167, no. 5, pp. 953–960, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. S. McLaughlin, J. Wang, A. Gambhir, and D. Murray, “PIP2 and proteins: interactions, organization, and information flow,” Annual Review of Biophysics and Biomolecular Structure, vol. 31, pp. 151–175, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Di Paolo and P. De Camilli, “Phosphoinositides in cell regulation and membrane dynamics,” Nature, vol. 443, no. 7112, pp. 651–657, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. N. Landman, S. Y. Jeong, S. Y. Shin et al., “Presenilin mutations linked to familial Alzheimer's disease cause an imbalance in phosphatidylinositol 4,5-bisphosphate metabolism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 51, pp. 19524–19529, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. S. Chun, S. Shin, Y. Kim et al., “Cholesterol modulates ion channels via down-regulation of phosphatidylinositol 4,5-bisphosphate,” Journal of Neurochemistry, vol. 112, no. 5, pp. 1286–1294, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. A. E. Christian, M. P. Haynes, M. C. Phillips, and G. H. Rothblat, “Use of cyclodextrins for manipulating cellular cholesterol content,” Journal of Lipid Research, vol. 38, no. 11, pp. 2264–2272, 1997. View at Google Scholar · View at Scopus
  25. V. G. Romanenko, G. H. Rothblat, and I. Levitan, “Modulation of endothelial inward-rectifier K+ current by optical isomers of cholesterol,” Biophysical Journal, vol. 83, no. 6, pp. 3211–3222, 2002. View at Google Scholar · View at Scopus
  26. M. Toselli, G. Biella, V. Taglietti, E. Cazzaniga, and M. Parenti, “Caveolin-1 expression and membrane cholesterol content modulate N-type calcium channel activity in NG108-15 cells,” Biophysical Journal, vol. 89, no. 4, pp. 2443–2457, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Ozaki, D. B. DeWald, J. C. Shope, J. Chen, and G. D. Prestwich, “Intracellular delivery of phosphoinositides and inositol phosphates using polyamine carriers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 21, pp. 11286–11291, 2000. View at Google Scholar · View at Scopus
  28. R. Zidovetzki and I. Levitan, “Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies,” Biochimica et Biophysica Acta, vol. 1768, no. 6, pp. 1311–1324, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. P. A. Janmey and U. Lindberg, “Cytoskeletal regulation: rich in lipids,” Nature Reviews Molecular Cell Biology, vol. 5, no. 8, pp. 658–666, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. L. J. Pike and J. M. Miller, “Cholesterol depletion delocalizes phosphatidylinositol bisphosphate and inhibits hormone-stimulated phosphatidylinositol turnover,” Journal of Biological Chemistry, vol. 273, no. 35, pp. 22298–22304, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. E. M. Hur, Y. S. Park, B. D. Lee et al., “Sensitization of epidermal growth factor-induced signaling by bradykinin is mediated by c-Src: implications for a role of lipid microdomains,” Journal of Biological Chemistry, vol. 279, no. 7, pp. 5852–5860, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Taguchi, H. Kumanogoh, S. Nakamura, and S. Maekawa, “Localization of phospholipase Cβ1 on the detergent-resistant membrane microdomain prepared from the synaptic plasma membrane fraction of rat brain,” Journal of Neuroscience Research, vol. 85, no. 6, pp. 1364–1371, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. J. C. Cossec, A. Simon, C. Marquer et al., “Clathrin-dependent APP endocytosis and Aβ secretion are highly sensitive to the level of plasma membrane cholesterol,” Biochimica et Biophysica Acta, vol. 1801, no. 8, pp. 846–852, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Uemura, C. M. Lill, X. Li et al., “Allosteric modulation of PS1/γ-secretase conformation correlates with amyloid β42/40 ratio,” PLoS ONE, vol. 4, no. 11, Article ID e7893, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Ebke, T. Luebbers, A. Fukumori et al., “Novel γ-secretase enzyme modulators directly target presenilin protein,” Journal of Biological Chemistry, vol. 286, no. 43, pp. 37181–37186, 2011. View at Publisher · View at Google Scholar
  36. R. G. Cutler, J. Kelly, K. Storie et al., “Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 7, pp. 2070–2075, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Xiong, D. Callaghan, A. Jones et al., “Cholesterol retention in Alzheimer's brain is responsible for high β- and γ-secretase activities and Aβ production,” Neurobiology of Disease, vol. 29, no. 3, pp. 422–437, 2008. View at Publisher · View at Google Scholar · View at Scopus