Table of Contents
Journal of Neurodegenerative Diseases
Volume 2013, Article ID 495873, 5 pages
http://dx.doi.org/10.1155/2013/495873
Clinical Study

The MFN2 V705I Variant Is Not a Disease-Causing Mutation: A Segregation Analysis in a CMT2 Family

1Northcott Neuroscience Laboratory, ANZAC Research Institute, Concord, NSW 2139, Australia
2Sydney Medical School, University of Sydney, Sydney, NSW 2008, Australia
3Molecular Medicine Laboratory, Concord Hospital, Concord, NSW 2139, Australia

Received 25 July 2012; Revised 23 October 2012; Accepted 23 October 2012

Academic Editor: Eng King Tan

Copyright © 2013 Obaid M. Albulym et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. E. Harding and P. K. Thomas, “Genetic aspects of hereditary motor and sensory neuropathy (types I and II),” Journal of Medical Genetics, vol. 17, no. 5, pp. 329–336, 1980. View at Google Scholar · View at Scopus
  2. I. Banchs, C. Casasnovas, A. Albertí et al., “Diagnosis of Charcot-Marie-Tooth disease,” Journal of Biomedicine and Biotechnology, vol. 2009, Article ID 985415, 10 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Züchner, I. V. Mersiyanova, M. Muglia et al., “Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A,” Nature Genetics, vol. 36, no. 5, pp. 449–451, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Sołtysińska, D. Kabzińska, and A. Kochański, “Mutations in the mitofusin 2 gene are the most common cause of Charcot-Marie-Tooth type 2 disease,” Neurologia i Neurochirurgia Polska, vol. 41, no. 4, pp. 350–354, 2007. View at Google Scholar · View at Scopus
  5. K. Verhoeven, K. G. Claeys, S. Züchner et al., “MFN2 mutation distribution and genotype/phenotype correlation in Charcot-Marie-Tooth type 2,” Brain, vol. 129, no. 8, pp. 2093–2102, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. E. A. Amiott, P. Lott, J. Soto et al., “Mitochondrial fusion and function in Charcot-Marie-Tooth type 2A patient fibroblasts with mitofusin 2 mutations,” Experimental Neurology, vol. 211, no. 1, pp. 115–127, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Ishihara, Y. Eura, and K. Mihara, “Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity,” Journal of Cell Science, vol. 117, part 26, pp. 6535–6546, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. F. Legros, A. Lombès, P. Frachon, and M. Rojo, “Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins,” Molecular Biology of the Cell, vol. 13, no. 12, pp. 4343–4354, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Eura, N. Ishihara, S. Yokota, and K. Mihara, “Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion,” Journal of Biochemistry, vol. 134, no. 3, pp. 333–344, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. Inherited Peripheral Neuropathies Mutation Database, vol. 2012, 2007.
  11. K. Engelfried, M. Vorgerd, M. Hagedorn et al., “Charcot-Marie-Tooth neuropathy type 2A: novel mutations in the mitofusin 2 gene (MFN2),” BMC Medical Genetics, vol. 7, article 53, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. G. J. Braathen, J. C. Sand, A. Lobato, H. Høyer, and M. B. Russell, “MFN2 point mutations occur in 3.4% of Charcot-Marie-Tooth families. An investigation of 232 Norwegian CMT families,” BMC Medical Genetics, vol. 11, no. 1, article 48, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Gopinath, I. P. Blair, M. L. Kennerson, J. C. Durnall, and G. A. Nicholson, “A novel locus for distal motor neuron degeneration maps to chromosome 7q34-q36,” Human Genetics, vol. 121, no. 5, pp. 559–564, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Vucic, M. Kennerson, D. Zhu, E. Miedema, C. Kok, and G. A. Nicholson, “CMT with pyramidal features,” Neurology, vol. 60, no. 4, pp. 696–699, 2003. View at Google Scholar · View at Scopus
  15. D. Zhu, M. L. Kennerson, G. Walizada, S. Züchner, J. M. Vance, and G. A. Nicholson, “Charcot-Marie-Tooth with pyramidal signs is genetically heterogeneous: families with and without MFN2 mutations,” Neurology, vol. 65, no. 3, pp. 496–497, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. J. M. Polke, M. Laurá, D. Pareyson et al., “Recessive axonal Charcot-Marie-Tooth disease due to compound heterozygous mitofusin 2 mutations,” Neurology, vol. 77, no. 2, pp. 168–173, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. G. A. Nicholson, C. Magdelaine, D. Zhu et al., “Severe early-onset axonal neuropathy with homozygous and compound heterozygous MFN2 mutations,” Neurology, vol. 70, no. 19, pp. 1678–1681, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Calvo, B. Funalot, R. A. Ouvrier et al., “Genotype-phenotype correlations in Charcot-Marie-Tooth disease type 2 caused by mitofusin 2 mutations,” Archives of Neurology, vol. 66, no. 12, pp. 1511–1516, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. R. G. Cotton and C. R. Scriver, “Proof of, “disease causing” mutation,” Human Mutation, vol. 12, no. 1, pp. 1–3, 1998. View at Google Scholar
  20. A. Kochański, “How to assess the pathogenicity of mutations in Charcot-Marie-Tooth disease and other diseases?” Journal of Applied Genetics, vol. 47, no. 3, pp. 255–260, 2006. View at Google Scholar · View at Scopus
  21. A. Kochański, “Pathogenic mutations and non-pathogenic DNA polymorphisms in the most common neurodegenerative disorders,” Folia Neuropathologica, vol. 45, no. 4, pp. 164–169, 2007. View at Google Scholar · View at Scopus
  22. K. Tynan, K. Comeau, M. Pearson et al., “Mutation screening of complete fibrillin-1 coding sequence: Report of five new mutations, including two in 8-cysteine domains,” Human Molecular Genetics, vol. 2, no. 11, pp. 1813–1821, 1993. View at Google Scholar · View at Scopus
  23. M. Wang, K. R. Mathews, K. Imaizumi et al., “P1148A in fibrillin-1 is not a mutation anymore,” Nature genetics, vol. 15, no. 1, p. 12, 1997. View at Google Scholar · View at Scopus
  24. Y. Watanabe, S. Yano, Y. Koga et al., “P1148A in fibrillin-1 is not a mutation leading to Shprintzen-Goldberg syndrome,” Human mutation, vol. 10, no. 4, pp. 326–327, 1997. View at Google Scholar · View at Scopus