Table of Contents
Journal of Neurodegenerative Diseases
Volume 2013 (2013), Article ID 746845, 11 pages
Review Article

Death Receptors in the Selective Degeneration of Motoneurons in Amyotrophic Lateral Sclerosis

1Inserm-Avenir team, The Mediterranean Institute of Neurobiology (INMED), 13288 Marseille, France
2Neurodegenerative Studies Laboratory, Brain Mind Institute, The Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
3Department of Medical Genetics, University of Lausanne, CH-1005 Lausanne, Switzerland
4The Mediterranean Institute of Neurobiology (INMED), Inserm UMR901, 13288 Marseille, France
5The Neuroscience Institute Montpellier (INM), INSERM UMR1051, Saint Eloi Hospital, 34091 Montpellier, France

Received 29 March 2013; Accepted 28 June 2013

Academic Editor: Colin Combs

Copyright © 2013 Julianne Aebischer et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


While studies on death receptors have long been restricted to immune cells, the last decade has provided a strong body of evidence for their implication in neuronal death and hence neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS). ALS is a fatal paralytic disorder that primarily affects motoneurons in the brain and spinal cord. A neuroinflammatory process, associated with astrocyte and microglial activation as well as infiltration of immune cells, accompanies motoneuron degeneration and supports the contribution of non-cell-autonomous mechanisms in the disease. Hallmarks of Fas, TNFR, LT-βR, and p7 signaling have been observed in both animal models and ALS patients. This review summarizes to date knowledge of the role of death receptors in ALS and the link existing between the selective loss of motoneurons and neuroinflammation. It further suggests how this recent evidence could be included in an ultimate multiapproach to treat patients.