Table of Contents
Journal of Neurodegenerative Diseases
Volume 2013, Article ID 857564, 8 pages
Research Article

Simple Repeat-Primed PCR Analysis of the Myotonic Dystrophy Type 1 Gene in a Clinical Diagnostics Environment

1Diagnostic Genetics, LabPlus, Auckland City Hospital, P.O. Box 110031, Auckland 1148, New Zealand
2School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand

Received 31 March 2013; Revised 18 September 2013; Accepted 19 September 2013

Academic Editor: Eng King Tan

Copyright © 2013 Philippa A. Dryland et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. D. Brook, M. E. McCurrach, H. G. Harley et al., “Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member,” Cell, vol. 68, no. 4, pp. 799–808, 1992. View at Google Scholar · View at Scopus
  2. H. Petri, J. Vissing, N. Witting, H. Bundgaard, and L. Køber, “Cardiac manifestations of myotonic dystrophy type 1,” International Journal of Cardiology, vol. 160, no. 2, pp. 82–88, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Addis, M. Serrenti, C. Meloni, M. Cau, and M. A. Melis, “Triplet-primed PCR is more sensitive than Southern blotting-long PCR for the diagnosis of myotonic dystrophy type1,” Genetic Testing and Molecular Biomarkers, vol. 16, no. 12, pp. 1428–1431, 2012. View at Publisher · View at Google Scholar
  4. The International Myotonic Dystrophy Consortium (IDMC), “New nomenclature and DNA testing guidelines for myotonic dystrophy type 1 (DM1),” Neurology, vol. 54, no. 6, pp. 1218–1221, 2000. View at Google Scholar · View at Scopus
  5. B. Echenne, A. Rideau, A. Roubertie, G. Sébire, F. Rivier, and B. Lemieux, “Myotonic dystrophy type I in childhood. Long-term evolution in patients surviving the neonatal period,” European Journal of Paediatric Neurology, vol. 12, no. 3, pp. 210–223, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. E. J. Kamsteeg, W. Kress, C. Catalli et al., “EMQN best practice guidelines and recommendations of myotonic dystrophy types 1 and 2,” European Journal of Human Genetics, vol. 20, no. 12, pp. 1203–1208, 2012. View at Google Scholar
  7. P. Ciotti, E. Di Maria, E. Bellone, F. Ajmar, and P. Mandich, “Triplet repeat primed PCR (TP PCR) in molecular diagnostic testing for Friedreich ataxia,” Journal of Molecular Diagnostics, vol. 6, no. 4, pp. 285–289, 2004. View at Google Scholar · View at Scopus
  8. J. P. Warner, L. H. Barron, D. Goudie et al., “A general method for the detection of large CAG repeat expansions by fluorescent PCR,” Journal of Medical Genetics, vol. 33, no. 12, pp. 1022–1026, 1996. View at Google Scholar · View at Scopus
  9. M. Falk, M. Vojtíšková, Z. Lukáš, I. Kroupová, and U. Froster, “Simple procedure for automatic detection of unstable alleles in the myotonic dystrophy and Huntington's disease loci,” Genetic Testing, vol. 10, no. 2, pp. 85–97, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. J. M. Love, R. Marquis-Nicholson, R. C. Love, and D. R. Love, “Portable battery-operated rapid PCR amplification of the CAG repeat region of the Huntington disease locus,” Research Journal of Biology, vol. 2, no. 6, pp. 191–196, 2012. View at Google Scholar
  11. J. Radvansky, A. Ficek, G. Minarik, R. Palffy, and L. Kadasi, “Effect of unexpected sequence interruptions to conventional PCR and repeat primed PCR in myotonic dystrophy type 1 testing,” Diagnostic Molecular Pathology, vol. 20, no. 1, pp. 48–51, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Braida, R. K. A. Stefanatos, B. Adam et al., “Variant CCG and GGC repeats within the CTG expansion dramatically modify mutational dynamics and likely contribute toward unusual symptoms in some myotonic dystrophy type 1 patients,” Human Molecular Genetics, vol. 19, no. 8, pp. 1399–1412, 2010. View at Publisher · View at Google Scholar · View at Scopus