Table of Contents
Journal of Neurodegenerative Diseases
Volume 2014 (2014), Article ID 938530, 14 pages
http://dx.doi.org/10.1155/2014/938530
Research Article

Differential Changes in Postsynaptic Density Proteins in Postmortem Huntington’s Disease and Parkinson’s Disease Human Brains

1Department of Physiology, Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, New Zealand
2Department of Anatomy with Radiology, Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, New Zealand
3School of Pharmacy, Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, New Zealand

Received 13 August 2013; Revised 14 October 2013; Accepted 29 October 2013; Published 16 January 2014

Academic Editor: Eng King Tan

Copyright © 2014 C. Fourie et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. P. Vonsattel, R. H. Myers, T. J. Stevens, R. J. Ferrante, E. D. Bird, and E. P. Richardson Jr., “Neuropathological classification of Huntington's disease,” Journal of Neuropathology and Experimental Neurology, vol. 44, no. 6, pp. 559–577, 1985. View at Google Scholar · View at Scopus
  2. H. Braak, K. Del Tredici, U. Rüb, R. A. I. de Vos, E. N. H. Jansen Steur, and E. Braak, “Staging of brain pathology related to sporadic Parkinson's disease,” Neurobiology of Aging, vol. 24, no. 2, pp. 197–211, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. W. R. G. Gibb, “Neuropathology of the substantia nigra,” European Neurology, vol. 31, no. 1, pp. 48–59, 1991. View at Google Scholar · View at Scopus
  4. J. S. Paulsen, D. R. Langbehn, J. C. Stout et al., “Detection of Huntington's disease decades before diagnosis: the Predict-HD study,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 79, no. 8, pp. 874–880, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Schippling, S. A. Schneider, K. P. Bhatia et al., “Abnormal motor cortex excitability in preclinical and very early Huntington's disease,” Biological Psychiatry, vol. 65, no. 11, pp. 959–965, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. A. J. Milnerwood and L. A. Raymond, “Early synaptic pathophysiology in neurodegeneration: insights from Huntington's disease,” Trends in Neurosciences, vol. 33, no. 11, pp. 513–523, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. K. A. Johnson, P. J. Conn, and C. M. Niswender, “Glutamate receptors as therapeutic targets for Parkinson's disease,” CNS and Neurological Disorders, vol. 8, no. 6, pp. 475–491, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. J. M. Montgomery, P. L. Zamorano, and C. C. Garner, “MAGUKs in synapse assembly and function: an emerging view,” Cellular and Molecular Life Sciences, vol. 61, no. 7-8, pp. 911–929, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. G. M. Elias, L. Funke, V. Stein, S. G. Grant, D. S. Bredt, and R. A. Nicoll, “Synapse-specific and developmentally regulated targeting of AMPA receptors by a family of MAGUK scaffolding proteins,” Neuron, vol. 52, no. 2, pp. 307–320, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Li, C. G. Specht, C. L. Waites et al., “SAP97 directs NMDA receptor spine targeting and synaptic plasticity,” Journal of Physiology, vol. 589, no. 18, pp. 4491–4510, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Zheng, G. K. Seabold, M. Horak, and R. S. Petralia, “MAGUKs, synaptic development, and synaptic plasticity,” Neuroscientist, vol. 17, no. 5, pp. 493–512, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Oliva, P. Escobedo, C. Astorga, C. Molina, and J. Sierralta, “Role of the maguk protein family in synapse formation and function,” Developmental Neurobiology, vol. 72, no. 1, pp. 57–72, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Schnell, M. Sizemore, S. Karimzadegan, L. Chen, D. S. Bredt, and R. A. Nicoll, “Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 21, pp. 13902–13907, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. H.-C. Kornau, L. T. Schenker, M. B. Kennedy, and P. H. Seeburg, “Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95,” Science, vol. 269, no. 5231, pp. 1737–1740, 1995. View at Google Scholar · View at Scopus
  15. M. Niethammer, E. Kim, and M. Sheng, “Interaction between the C terminus of NMDA receptor subunits and multiple members of the PSD-95 family of membrane-associated guanylate kinases,” The Journal of Neuroscience, vol. 16, no. 7, pp. 2157–2163, 1996. View at Google Scholar · View at Scopus
  16. A. S. Leonard, M. A. Davare, M. C. Horne, C. C. Garner, and J. W. Hell, “SAP97 is associated with the α-amino-3-hydroxy-5-methylisoxazole-4- propionic acid receptor GluR1 subunit,” The Journal of Biological Chemistry, vol. 273, no. 31, pp. 19518–19524, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Bassand, A. Bernard, A. Rafiki, D. Gayet, and M. Khrestchatisky, “Differential interaction of the tSXV motifs of the NR1 and NR2A NMDA receptor subunits with PSD-95 and SAP97,” European Journal of Neuroscience, vol. 11, no. 6, pp. 2031–2043, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. O. Jeyifous, C. L. Waites, C. G. Specht et al., “SAP97 and CASK mediate sorting of NMDA receptors through a previously unknown secretory pathway,” Nature Neuroscience, vol. 12, no. 8, pp. 1011–1019, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Gardoni, B. Picconi, V. Ghiglieri et al., “A critical interaction between NR2B and MAGUK in L-DOPA induced dyskinesia,” The Journal of Neuroscience, vol. 26, no. 11, pp. 2914–2922, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Gardoni, V. Ghiglieri, M. D. Luca, and P. Calabresi, “Assemblies of glutamate receptor subunits with post-synaptic density proteins and their alterations in Parkinson's disease,” Progress in Brain Research, vol. 183, pp. 169–182, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Sun, A. Savanenin, P. H. Reddy, and Y. F. Liu, “Polyglutamine-expanded Huntingtin promotes sensitization of N-methyl-D-aspartate receptors via post-synaptic density 95,” The Journal of Biological Chemistry, vol. 276, no. 27, pp. 24713–24718, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. M. M. Zeron, O. Hansson, N. Chen et al., “Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington's disease,” Neuron, vol. 33, no. 6, pp. 849–860, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Shehadeh, H. B. Fernandes, M. M. Z. Mullins et al., “Striatal neuronal apoptosis is preferentially enhanced by NMDA receptor activation in YAC transgenic mouse model of Huntington disease,” Neurobiology of Disease, vol. 21, no. 2, pp. 392–403, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. M. M. Y. Fan, H. B. Fernandes, L. Y. J. Zhang, M. R. Hayden, and L. A. Raymond, “Altered NMDA receptor trafficking in a yeast artificial chromosome transgenic mouse model of Huntington's disease,” The Journal of Neuroscience, vol. 27, no. 14, pp. 3768–3779, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Fan, C. M. Cowan, L. Y. J. Zhang, M. R. Hayden, and L. A. Raymond, “Interaction of postsynaptic density protein-95 with NMDA receptors influences excitotoxicity in the yeast artificial chromosome mouse model of Huntington's disease,” The Journal of Neuroscience, vol. 29, no. 35, pp. 10928–10938, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Fan, C. M. Gladding, L. Wang et al., “P38 MAPK is involved in enhanced NMDA receptor-dependent excitotoxicity in YAC transgenic mouse model of Huntington disease,” Neurobiology of Disease, vol. 45, no. 3, pp. 999–1009, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. J. F. Torres-Peraza, A. Giralt, J. M. García-Martínez, E. Pedrosa, J. M. Canals, and J. Alberch, “Disruption of striatal glutamatergic transmission induced by mutant huntingtin involves remodeling of both postsynaptic density and NMDA receptor signaling,” Neurobiology of Disease, vol. 29, no. 3, pp. 409–421, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. B. R. Jarabek, R. P. Yasuda, and B. B. Wolfe, “Regulation of proteins affecting NMDA receptor-induced excitotoxicity in a Huntington's mouse model,” Brain, vol. 127, no. 3, pp. 505–516, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. J. E. Nash, T. H. Johnston, G. L. Collingridge, C. C. Garner, and J. M. Brotchie, “Subcellular redistribution of the synapse-associated proteins PSD-95 and SAP97 in animal models of Parkinson's disease and L-DOPA-induced dyskinesia,” The FASEB Journal, vol. 19, no. 6, pp. 583–585, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. M. M. Y. Fan and L. A. Raymond, “N-methyl-d-aspartate (NMDA) receptor function and excitotoxicity in Huntington's disease,” Progress in Neurobiology, vol. 81, no. 5-6, pp. 272–293, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. C. L. Waites, C. G. Specht, K. Hartel et al., “Synaptic SAP97 isoforms regulate AMPA receptor dynamics and access to presynaptic glutamate,” The Journal of Neuroscience, vol. 29, no. 14, pp. 4332–4345, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. H. J. Waldvogel, K. Baer, K. L. Allen, M. I. Rees, and R. L. M. Faull, “Glycine receptors in the striatum, globus pallidus, and substantia nigra of the human brain: an immunohistochemical study,” Journal of Comparative Neurology, vol. 502, no. 6, pp. 1012–1029, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. H. J. Waldvogel, M. A. Curtis, K. Baer, M. I. Rees, and R. L. M. Faull, “Immunohistochemical staining of post-mortem adult human brain sections,” Nature Protocols, vol. 1, no. 6, pp. 2719–2732, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. G. Leuba, A. Savioz, A. Vernay et al., “Differential changes in synaptic proteins in the Alzheimer frontal cortex with marked increase in PSD-95 postsynaptic protein,” Journal of Alzheimer's Disease, vol. 15, no. 1, pp. 139–151, 2008. View at Google Scholar · View at Scopus
  35. I. Romero-Calvo, B. Ocón, P. Martínez-Moya et al., “Reversible Ponceau staining as a loading control alternative to actin in Western blots,” Analytical Biochemistry, vol. 401, no. 2, pp. 318–320, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. N. Sans, C. Racca, R. S. Petralia, Y. Wang, J. McCallum, and R. J. Wenthold, “Synapse-associated protein 97 selectively associates with a subset of AMPA receptors early in their biosynthetic pathway,” The Journal of Neuroscience, vol. 21, no. 19, pp. 7506–7516, 2001. View at Google Scholar · View at Scopus
  37. R. J. Wenthold and K. W. Roche, “The organization and regulation of non-NMDA receptors in neurons,” Progress in Brain Research, vol. 116, pp. 133–152, 1998. View at Google Scholar · View at Scopus
  38. A. D. Lawrence, J. R. Hodges, A. E. Rosser et al., “Evidence for specific cognitive deficits in preclinical Huntington's disease,” Brain, vol. 121, no. 7, pp. 1329–1341, 1998. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Montoya, B. H. Price, M. Menear, and M. Lepage, “Brain imaging and cognitive dysfunctions in Huntington's disease,” Journal of Psychiatry and Neuroscience, vol. 31, no. 1, pp. 21–29, 2006. View at Google Scholar · View at Scopus
  40. A. Giralt, M. Puigdellívol, O. Carretón et al., “Long-term memory deficits in Huntington's disease are associated with reduced CBP histone acetylase activity,” Human Molecular Genetics, vol. 21, no. 6, pp. 1203–1216, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. J. M. Van Raamsdonk, Z. Murphy, E. J. Slow, B. R. Leavitt, and M. R. Hayden, “Selective degeneration and nuclear localization of mutant huntingtin in the YAC128 mouse model of Huntington disease,” Human Molecular Genetics, vol. 14, no. 24, pp. 3823–3835, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. J. B. Carroll, J. P. Lerch, S. Franciosi et al., “Natural history of disease in the YAC128 mouse reveals a discrete signature of pathology in Huntington disease,” Neurobiology of Disease, vol. 43, no. 1, pp. 257–265, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. J. M. Van Raamsdonk, J. Pearson, D. A. Rogers et al., “Loss of wild-type huntingtin influences motor dysfunction and survival in the YAC128 mouse model of Huntington disease,” Human Molecular Genetics, vol. 14, no. 10, pp. 1379–1392, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. J. M. Van Raamsdonk, J. Pearson, D. A. Rogers et al., “Ethyl-EPA treatment improves motor dysfunction, but not neurodegeneration in the YAC128 mouse model of Huntington disease,” Experimental Neurology, vol. 196, no. 2, pp. 266–272, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. J. M. Van Raamsdonk, J. Pearson, Z. Murphy, M. R. Hayden, and B. R. Leavitt, “Wild-type huntingtin ameliorates striatal neuronal atrophy but does not prevent other abnormalities in the YAC128 mouse model of Huntington disease,” BMC Neuroscience, vol. 7, article 80, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. R. Diamond, R. F. White, R. H. Myers et al., “Evidence of presymptomatic cognitive decline in Huntington's disease,” Journal of Clinical and Experimental Neuropsychology, vol. 14, no. 6, pp. 961–975, 1992. View at Google Scholar · View at Scopus
  47. T. Ziemssen and H. Reichmann, “Non-motor dysfunction in Parkinson's disease,” Parkinsonism and Related Disorders, vol. 13, no. 6, pp. 323–332, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. H. Cui, A. Hayashi, H. Sun et al., “PDZ protein interactions underlying NMDA receptor-mediated excitotoxicity and neuroprotection by PSD-95 inhibitors,” The Journal of Neuroscience, vol. 27, no. 37, pp. 9901–9915, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. G. A. Graveland, R. S. Williams, and M. DiFiglia, “Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington's disease,” Science, vol. 227, no. 4688, pp. 770–773, 1985. View at Google Scholar · View at Scopus
  50. G. J. Klapstein, R. S. Fisher, H. Zanjani et al., “Electrophysiological and morphological changes in striatal spiny neurons in R6/2 Huntington's disease transgenic mice,” Journal of Neurophysiology, vol. 86, no. 6, pp. 2667–2677, 2001. View at Google Scholar · View at Scopus
  51. T. L. Spires, H. E. Grote, S. Garry et al., “Dendritic spine pathology and deficits in experience-dependent dendritic plasticity in R6/1 Huntington's disease transgenic mice,” European Journal of Neuroscience, vol. 19, no. 10, pp. 2799–2807, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. A. B. Young, J. T. Greenamyre, Z. Hollingworth et al., “NMDA receptor losses in putamen from patients with Huntington's disease,” Science, vol. 241, no. 4868, pp. 981–983, 1988. View at Google Scholar · View at Scopus
  53. G. E. Hardingham, Y. Fukunaga, and H. Bading, “Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways,” Nature Neuroscience, vol. 5, no. 5, pp. 405–414, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Okamoto, M. A. Pouladi, M. Talantova et al., “Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin,” Nature Medicine, vol. 15, no. 12, pp. 1407–1413, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. A. J. Milnerwood, C. M. Gladding, M. A. Pouladi et al., “Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington's disease mice,” Neuron, vol. 65, no. 2, pp. 178–190, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. K. L. Double, V. N. Dedov, H. Fedorow et al., “The comparative biology of neuromelanin and lipofuscin in the human brain,” Cellular and Molecular Life Sciences, vol. 65, no. 11, pp. 1669–1682, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. J. G. Hodgson, N. Agopyan, C. Gutekunst et al., “A YAC mouse model for Huntington's disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration,” Neuron, vol. 23, no. 1, pp. 181–192, 1999. View at Publisher · View at Google Scholar · View at Scopus
  58. K. P. S. J. Murphy, R. J. Carter, L. A. Lione et al., “Abnormal synaptic plasticity and impaired spatial cognition in mice transgenic for exon 1 of the human Huntington's disease mutation,” The Journal of Neuroscience, vol. 20, no. 13, pp. 5115–5123, 2000. View at Google Scholar · View at Scopus
  59. M. T. Usdin, P. F. Shelbourne, R. M. Myers, and D. V. Madison, “Impaired synaptic plasticity in mice carrying the Huntington's disease mutation,” Human Molecular Genetics, vol. 8, no. 5, pp. 839–846, 1999. View at Google Scholar · View at Scopus
  60. G. Leuba, C. Walzer, A. Vernay et al., “Postsynaptic density protein PSD-95 expression in Alzheimer's disease and okadaic acid induced neuritic retraction,” Neurobiology of Disease, vol. 30, no. 3, pp. 408–419, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. R. K. Graham, Y. Deng, E. J. Slow et al., “Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant Huntingtin,” Cell, vol. 125, no. 6, pp. 1179–1191, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. I. Rattray, E. Smith, R. Gale, K. Matsumoto, G. P. Bates, and M. Modo, “Correlations of behavioral deficits with brain pathology assessed through longitudinal MRI and histopathology in the R6/2 mouse model of HD,” PLoS ONE, vol. 8, Article ID e60012, 2013. View at Google Scholar
  63. J. M. Van Raamsdonk, J. Pearson, E. J. Slow, S. M. Hossain, B. R. Leavitt, and M. R. Hayden, “Cognitive dysfunction precedes neuropathology and motor abnormalities in the YAC128 mouse model of Huntington's disease,” The Journal of Neuroscience, vol. 25, no. 16, pp. 4169–4180, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. M. A. Pouladi, R. K. Graham, J. M. Karasinska et al., “Prevention of depressive behaviour in the YAC128 mouse model of Huntington disease by mutation at residue 586 of huntingtin,” Brain, vol. 132, no. 4, pp. 919–932, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. J. M. Simpson, J. Gil-Mohapel, M. A. Pouladi et al., “Altered adult hippocampal neurogenesis in the YAC128 transgenic mouse model of Huntington disease,” Neurobiology of Disease, vol. 41, no. 2, pp. 249–260, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. J. Nithianantharajah, C. Barkus, M. Murphy, and A. J. Hannan, “Gene-environment interactions modulating cognitive function and molecular correlates of synaptic plasticity in Huntington's disease transgenic mice,” Neurobiology of Disease, vol. 29, no. 3, pp. 490–504, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. A. W. Dunah, Y. Wang, R. P. Yasuda et al., “Alterations in subunit expression, composition, and phosphorylation of striatal N-methyl-D-aspartate glutamate receptors in a rat 6-hydroxydopamine model of Parkinson's disease,” Molecular Pharmacology, vol. 57, no. 2, pp. 342–352, 2000. View at Google Scholar · View at Scopus
  68. M. A. Ariano, N. Wagle, and A. E. Grissell, “Neuronal vulnerability in mouse models of Huntington's disease: membrane channel protein changes,” Journal of Neuroscience Research, vol. 80, no. 5, pp. 634–645, 2005. View at Publisher · View at Google Scholar · View at Scopus
  69. C. Cepeda, M. A. Ariano, C. R. Calvert et al., “NMDA receptor function in mouse models of Huntington disease,” Journal of Neuroscience Research, vol. 66, no. 4, pp. 525–539, 2001. View at Publisher · View at Google Scholar · View at Scopus