Table of Contents
Journal of Neurodegenerative Diseases
Volume 2017 (2017), Article ID 1436519, 8 pages
https://doi.org/10.1155/2017/1436519
Research Article

Influence of Resistance Training on Neuromuscular Function and Physical Capacity in ALS Patients

1Department of Sports Science and Clinical Biomechanics, SDU Muscle Research Cluster, University of Southern Denmark, 5230 Odense M, Denmark
2Institute of Clinical Research, Clinical Pathology, SDU Muscle Research Cluster, University of Southern Denmark, 5000 Odense C, Denmark
3Institute of Clinical Research, The Orthopaedic Research Unit, University of Southern Denmark, 5000 Odense C, Denmark

Correspondence should be addressed to P. Aagaard

Received 29 December 2016; Accepted 24 April 2017; Published 17 May 2017

Academic Editor: Anabela C. Pinto

Copyright © 2017 L. Jensen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. C. Kiernan, S. Vucic, B. C. Cheah et al., “Amyotrophic lateral sclerosis,” The Lancet, vol. 377, no. 9769, pp. 942–955, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Caserotti, P. Aagaard, J. Buttrup Larsen, and L. Puggaard, “Explosive heavy-resistance training in old and very old adults: changes in rapid muscle force, strength and power,” Scandinavian Journal of Medicine and Science in Sports, vol. 18, no. 6, pp. 773–782, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Aagaard, E. B. Simonsen, J. L. Andersen, P. Magnusson, and P. Dyhre-Poulsen, “Increased rate of force development and neural drive of human skeletal muscle following resistance training,” Journal of Applied Physiology, vol. 93, no. 4, pp. 1318–1326, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. L. G. Hvid, E. S. Strotmeyer, M. Skjødt, L. V. Magnussen, M. Andersen, and P. Caserotti, “Voluntary muscle activation improves with power training and is associated with changes in gait speed in mobility-limited older adults—a randomized controlled trial,” Experimental Gerontology, vol. 80, pp. 51–56, 2016. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Sinaki and D. W. Mulder, “Rehabilitation techniques for patients with amyotrophic lateral sclerosis,” Mayo Clinic Proceedings, vol. 53, no. 3, pp. 173–178, 1978. View at Google Scholar · View at Scopus
  6. R. W. Bohannon, “Results of resistance exercise on a patient with amyotrophic lateral sclerosis. A case report,” Physical Therapy, vol. 63, no. 6, pp. 965–968, 1983. View at Publisher · View at Google Scholar · View at Scopus
  7. A. C. Pinto, M. Alves, A. Nogueira et al., “Can amyotrophic lateral sclerosis patients with respiratory insufficiency exercise?” Journal of the Neurological Sciences, vol. 169, no. 1-2, pp. 69–75, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. A. C. Pinto, T. Evangelista, M. de Carvalho, T. Paiva, and M. de Lurdes Sales-Luís, “Respiratory disorders in ALS: sleep and exercise studies,” Journal of the Neurological Sciences, vol. 169, no. 1-2, pp. 61–68, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Lunetta, A. Lizio, V. A. Sansone et al., “Strictly monitored exercise programs reduce motor deterioration in ALS: preliminary results of a randomized controlled trial,” Journal of Neurology, vol. 263, no. 1, pp. 52–60, 2016. View at Publisher · View at Google Scholar · View at Scopus
  10. V. D. Bello-Haas, J. M. Florence, A. D. Kloos et al., “A randomized controlled trial of resistance exercise in individuals with ALS,” Neurology, vol. 68, no. 23, pp. 2003–2007, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. V. E. Drory, E. Goltsman, J. Goldman Reznik, A. Mosek, and A. D. Korczyn, “The value of muscle exercise in patients with amyotrophic lateral sclerosis,” Journal of the Neurological Sciences, vol. 191, no. 1-2, pp. 133–137, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Stålberg, “Electrophysiological studies of reinnervation in ALS.,” Advances in neurology, vol. 36, pp. 47–59, 1982. View at Google Scholar · View at Scopus
  13. M. Dantes and A. McComas, “The extent and time course of motoneuron involvement in amyotrophic lateral sclerosis,” Muscle & Nerve, vol. 14, no. 5, pp. 416–421, 1991. View at Publisher · View at Google Scholar · View at Scopus
  14. K. R. Sharma and R. G. Miller, “Electrical and mechanical properties of skeletal muscle underlying increased fatigue in patients with amyotrophic lateral sclerosis,” Muscle and Nerve, vol. 19, no. 11, pp. 1391–1400, 1996. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Jensen, L. H. Jørgensen, R. D. Bech, U. Frandsen, and H. D. Schrøder, “Skeletal muscle remodelling as a function of disease progression in amyotrophic lateral sclerosis,” BioMed Research International, vol. 2016, Article ID 5930621, 12 pages, 2016. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Armon and D. Moses, “Linear estimates of rates of disease progression as predictors of survival in patients with ALS entering clinical trials,” Journal of the Neurological Sciences, vol. 160, 1, pp. S37–S41, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. P. H. Gordon, B. Cheng, F. Salachas et al., “Progression in ALS is not linear but is curvilinear,” Journal of Neurology, vol. 257, no. 10, pp. 1713–1717, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. J. M. Cedarbaum, N. Stambler, E. Malta et al., “The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function,” Journal of the Neurological Sciences, vol. 169, no. 1-2, pp. 13–21, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. C. J. Jones, R. E. Rikli, and W. C. Beam, “A 30-s chair-stand test as a measure of lower body strength in community-residing older adults,” Research Quarterly for Exercise and Sport, vol. 70, no. 2, pp. 113–119, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Montes, B. Cheng, B. Diamond, C. Doorish, H. Mitsumoto, and P. H. Gordon, “The timed up and go test: predicting falls in ALS,” Amyotrophic Lateral Sclerosis, vol. 8, no. 5, pp. 292–295, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. E. J. Bassey and A. H. Short, “A new method for measuring power output in a single leg extension: feasibility, reliability and validity,” European Journal of Applied Physiology and Occupational Physiology, vol. 60, no. 5, pp. 385–390, 1990. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Hvid, P. Aagaard, L. Justesen et al., “Effects of aging on muscle mechanical function and muscle fiber morphology during short-term immobilization and subsequent retraining,” Journal of Applied Physiology, vol. 109, no. 6, pp. 1628–1634, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Castrillo-Viguera, D. L. Grasso, E. Simpson, J. Shefner, and M. E. Cudkowicz, “Clinical significance in the change of decline in ALSFRS-R,” Amyotrophic Lateral Sclerosis, vol. 11, no. 1-2, pp. 178–180, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Suetta, P. Aagaard, S. P. Magnusson et al., “Muscle size, neuromuscular activation, and rapid force characteristics in elderly men and women: effects of unilateral long-term disuse due to hip-osteoarthritis,” Journal of Applied Physiology, vol. 102, no. 3, pp. 942–948, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. G. R. Adams and M. M. Bamman, “Characterization and regulation of mechanical loading-induced compensatory muscle hypertrophy,” Comprehensive Physiology, vol. 2, no. 4, pp. 2829–2870, 2012. View at Google Scholar
  26. R. Carilho, M. de Carvalho, M. Swash, S. Pinto, A. Pinto, and J. Costa, “Vascular endothelial growth factor and amyotrophic lateral sclerosis: the interplay with exercise and noninvasive ventilation,” Muscle and Nerve, vol. 49, no. 4, pp. 545–550, 2014. View at Publisher · View at Google Scholar · View at Scopus