Table of Contents
Journal of Nanoparticles
Volume 2013, Article ID 106152, 9 pages
http://dx.doi.org/10.1155/2013/106152
Research Article

The Impact of Nanochloroquine on Restoration of Hepatic and Splenic Mitochondrial Damage against Rodent Malaria

Immunology and Microbiology Laboratory, Department of Human Physiology with Community Health, Vidyasagar University, Midnapore West Bengal 721102, India

Received 29 January 2013; Accepted 23 April 2013

Academic Editor: Vijaya Rangari

Copyright © 2013 Satyajit Tripathy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. L. Olliaro and P. I. Trigg, “Status of antimalarial drugs under development,” Bulletin of the World Health Organization, vol. 73, no. 5, pp. 565–571, 1995. View at Google Scholar · View at Scopus
  2. W. Peters, “The problem of drug resistance in malaria,” Parasitology, vol. 90, pp. 705–715, 1985. View at Google Scholar
  3. N. J. White, “Antimalarial drug resistance: the pace quickens,” Journal of Antimicrobial Chemotherapy, vol. 30, no. 5, pp. 571–585, 1992. View at Google Scholar · View at Scopus
  4. L. R. Brunet, “Nitric oxide in parasitic infections,” International Immunopharmacology, vol. 1, no. 8, pp. 1457–1467, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. M. M. Stevenson and E. M. Riley, “Innate immunity to malaria,” Nature Reviews Immunology, vol. 4, no. 3, pp. 169–180, 2004. View at Google Scholar · View at Scopus
  6. A. Holmgren, “Antioxidant function of thioredoxin and glutaredoxin systems,” Antioxidants and Redox Signaling, vol. 2, no. 4, pp. 811–820, 2000. View at Google Scholar · View at Scopus
  7. P. Srivastava, S. K. Puri, G. P. Dutta, and V. C. Pandey, “Hepatic superoxide-scavenging system during Plasmodium berghei infection and chloroquine treatment,” Medical Science Research, vol. 19, no. 10, pp. 307–308, 1991. View at Google Scholar · View at Scopus
  8. C. Guinovart, M. M. Navia, M. Tanner, and P. L. Alonso, “Malaria: burden of disease,” Current Molecular Medicine, vol. 6, no. 2, pp. 137–140, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Dey, M. Guha, A. Alam et al., “Malarial infection develops mitochondrial pathology and mitochondrial oxidative stress to promote hepatocyte apoptosis,” Free Radical Biology and Medicine, vol. 46, no. 2, pp. 271–281, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. I. Landau and P. Gautret, “Animal models: rodents,” in Malaria: Parasite Biology, Pathogenesis, and Protection, I. W. Sherman, Ed., pp. 401–417, ASM Press, Washington, DC, USA, 1998. View at Google Scholar
  11. W. Peters, J. H. Portus, and B. L. Robinson, “The chemotherapy of rodent malaria, XXII. The value of drug resistant strains of P. berghei in screening for blood schizontocidal activity,” Annals of Tropical Medicine and Parasitology, vol. 69, no. 2, pp. 155–171, 1975. View at Google Scholar · View at Scopus
  12. E. C. Ibezim, C. T. Andrade, C. M. B. Barretto, D. C. Odimegwu, and F. F. D. Lima, “Ionically cross-linked chitosan/tripolyphosphate microparticles for the controlled delivery of pyrimethamine,” Ibinosina Journal of Medicine and Biological Sciences, vol. 3, no. 3, pp. 77–87, 2011. View at Google Scholar
  13. J. W. Loh, M. Saunders, and L. Y. Lim, “Cytotoxicity of monodispersed chitosan nanoparticles against the Caco-2 cells,” Toxicology and Applied Pharmacology, vol. 262, no. 3, pp. 273–282, 2012. View at Publisher · View at Google Scholar
  14. S. Tripathy, S. Das, S. P. Chakraborty, S. K. Sahu, P. Pramanik, and S. Roy, “Synthesis, characterization of chitosan-tripolyphosphate conjugated chloroquine nanoparticle and its in vivo anti-malarial efficacy against rodent parasite: a dose and duration dependent approach,,” International Journal of Pharmaceutics, vol. 434, pp. 292–305, 2012. View at Publisher · View at Google Scholar
  15. S. Tripathy, S. P. Chakraborty, and S. Roy, “Superoxide radical generation mediated Plasmodium berghei infection in Swiss mice,” Al Ameen Journal of Medical Sciences, vol. 5, pp. 69–81, 2012. View at Google Scholar
  16. J. R. Aprille and J. Austin, “Regulation of the mitochondrial adenine nucleotide pool size,” Archives of Biochemistry and Biophysics, vol. 212, no. 2, pp. 689–699, 1981. View at Google Scholar · View at Scopus
  17. A. Boveris, “Determination of the production of superoxide radicals and hydrogen peroxide in mitochondria,” Methods in Enzymology, vol. 105, pp. 429–435, 1984. View at Google Scholar · View at Scopus
  18. S. KarMahapatra, S. P. Chakraborty, S. Das, and S. Roy, “Methanol extract of Ocimum gratissimum protects murine peritoneal macrophages from nicotine toxicity by decreasing free radical generation, lipid and protein damage and enhances antioxidant protection,” Oxidative Medicine and Cellular Longevity, vol. 2, no. 4, pp. 222–230, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. O. H. Lowry, N. J. Rosenbrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951. View at Google Scholar · View at Scopus
  20. P. Reungpatthanaphong and S. Mankhetkorn, “Modulation of multidrug resistance by artemisinin, artesunate and dihydroartemisinin in K562/adr and GLC4/adr resistant cell lines,” Biological and Pharmaceutical Bulletin, vol. 25, no. 12, pp. 1555–1561, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. B. R. Moore, J. D. Jago, and K. T. Batty, “Plasmodium berghei: parasite clearance after treatment with dihydroartemisinin in an asplenic murine malaria model,” Experimental Parasitology, vol. 118, no. 4, pp. 458–467, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Carter and D. Walliker, “New observations on the malaria parasites of rodents of the Central African Republic. Plasmodium vinckei petteri subsp. nov. and Plasmodium chabaudi Landau, 1965,” Annals of Tropical Medicine and Parasitology, vol. 69, no. 2, pp. 187–196, 1975. View at Google Scholar · View at Scopus
  23. B. S. Das and N. K. Nanda, “Evidence for erythrocyte lipid pepoxidation in acute falciparum malaria,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 93, no. 1, pp. 58–62, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. J. H. Santos, B. S. Mandavilli, and B. Van Houten, “Measuring oxidative mtDNA damage and repair using quantitative PCR,” Methods in Molecular Biology, vol. 197, pp. 159–176, 2002. View at Google Scholar · View at Scopus
  25. N. Evelyne, P. Nathaline, F. Candau et al., “Biopolymer and polymer nanoparticles and their biomedical applications,” Handbook of Nanostructure and Nanotechnology, vol. 5, pp. 577–635, 2000. View at Google Scholar
  26. K. A. Janes, P. Calvo, and M. J. Alonso, “Polysaccharide colloidal particles as delivery systems for macromolecules,” Advanced Drug Delivery Reviews, vol. 47, no. 1, pp. 83–97, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Swai, B. Semete, L. Kalombo, and P. Chelule, “Potential of treating tuberculosis with a polymeric nano-drug delivery system,” Journal of Controlled Release, vol. 132, p. e48, 2008. View at Google Scholar
  28. I. Landau and A. G. Chabaud, “Natural infection by 2 plasmodia of the rodent Thamnomys rutilans in the Central African Republic,” Comptes Rendus Hebdomadaires des Seances de l"Academie des Sciences D, vol. 261, no. 1, pp. 230–232, 1965. View at Google Scholar · View at Scopus
  29. M. Yoeli, B. Hargreaves, R. Carter, and D. Walliker, “Sudden increase in virulence in a strain of Plasmodium yoelii,” Annals of Tropical Medicine and Parasitology, vol. 69, no. 2, pp. 173–178, 1975. View at Google Scholar · View at Scopus
  30. B. S. Das and N. K. Nanda, “Evidence for erythrocyte lipid pepoxidation in acute falciparum malaria,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 93, no. 1, pp. 58–62, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Pabon, J. Carmona, L. C. Burgos, and S. Blair, “Oxidative stress in patients with non-complicated malaria,” Clinical Biochemistry, vol. 36, pp. 71–78, 2003. View at Google Scholar
  32. M. J. Czaja, “Induction and regulation of hepatocyte apoptosis by oxidative stress,” Antioxidants and Redox Signaling, vol. 4, no. 5, pp. 759–767, 2002. View at Google Scholar · View at Scopus
  33. T. A. Sarafian and D. E. Bredesen, “Is apoptosis mediated by reactive oxygen species?” Free Radical Research, vol. 21, no. 1, pp. 1–8, 1994. View at Google Scholar · View at Scopus
  34. K. Biswas, U. Bandyopadhyay, I. Chattopadhyay, A. Varadaraj, E. Ali, and R. K. Banerjee, “A novel antioxidant and antiapoptotic role of omeprazole to block gastric ulcer through scavenging of hydroxyl radical,” Journal of Biological Chemistry, vol. 278, no. 13, pp. 10993–11001, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. D. R. Green and J. C. Reed, “Mitochondria and apoptosis,” Science, vol. 281, no. 5381, pp. 1309–1312, 1998. View at Google Scholar · View at Scopus
  36. H. U. Simon, A. Haj-Yehia, and F. Levi-Schaffer, “Role of reactive oxygen species (ROS) in apoptosis induction,” Apoptosis, vol. 5, no. 5, pp. 415–418, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Guha, S. Kumar, V. Choubey, P. Maity, and U. Bandyopadhyay, “Apoptosis in liver during malaria: role of oxidative stress and implication of mitochondrial pathway,” The FASEB Journal, vol. 20, no. 8, pp. E439–E449, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Sanchez-Torres, A. Rodriguez-Ropon, M. Aguilar-Medina, and L. Favila-Castillo, “Mouse splenic CD4+ and CD8+ T cells undergo extensive apoptosis during a Plasmodium chabaudi chabaudi AS infection,” Parasite Immunology, vol. 23, no. 12, pp. 617–626, 2001. View at Publisher · View at Google Scholar · View at Scopus