Table of Contents
Journal of Nanoparticles
Volume 2013, Article ID 274894, 8 pages
http://dx.doi.org/10.1155/2013/274894
Research Article

Synthesis of ZnO Nanostructures by Microwave Irradiation Using Albumen as a Template

1Nanotechnology Laboratory, Department of Physics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, Tamil Nadu 641020, India
2Department of Electronic Engineering, Chemistry and Industrial Engineering, University of Messina, 98166 Messina, Italy
3Department of Physics, B. R. Ambedkar Bihar University, Muzaffarpur, Bihar 842001, India

Received 10 January 2013; Accepted 1 February 2013

Academic Editor: Amir Kajbafvala

Copyright © 2013 T. Prakash et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. B. Rao, “Zinc oxide ceramic semi-conductor gas sensor for ethanol vapour,” Materials Chemistry and Physics, vol. 64, no. 1, pp. 62–65, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. W. H. G. Horsthuis, “ZnO processing for integrated optic sensors,” Thin Solid Films, vol. 137, no. 2, pp. 185–192, 1986. View at Google Scholar · View at Scopus
  3. Asif, Nur, Willander, and Danielsson, “Selective calcium ion detection with functionalized ZnO nanorods-extended gate MOSFET,” Biosensors and Bioelectronics, vol. 24, no. 11, pp. 3379–3382, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Xia, N. Wang, L. Lidong, and G. Lin, “Synthesis and characterization of waxberry-like microstructures ZnO for biosensors,” Sensors and Actuators B, vol. 129, no. 1, pp. 268–273, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. Krishnamoorthy and Iliadis, “Development of high frequency ZnO/SiO2/Si Love mode surface acoustic wave devices,” Solid-State Electronics, vol. 50, no. 6, pp. 1113–1118, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. Liu, Zhang, Lu et al., “Fabrication and characterization of ZnO film based UV photodetector,” Journal of Materials Science, vol. 20, no. 3, pp. 197–201, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Wang and M. Li, “Hydrothermal synthesis of single-crystalline hexagonal prism ZnO nanorods,” Materials Letters, vol. 60, no. 2, pp. 266–269, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. Lee, Easteal, Pal, and Bhattacharyya, “Evolution of ZnO nanostructures in sol-gel synthesis,” Current Applied Physics, vol. 9, no. 4, pp. 792–796, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. Wang, Liu, Chang, and Tang, “Synthesis of sulfur-doped ZnO nanowires by electrochemical deposition,” Materials Science in Semiconductor Processing, vol. 10, no. 6, pp. 241–245, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Park, Y. Choi, and J. Park, “Synthesis of ZnO nanowires and nanosheets by an O2-assisted carbothermal reduction process,” Journal of Crystal Growth, vol. 280, no. 1-2, pp. 161–167, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Cheng, J. Cheng, Y. Zhang, and Q. Wang, “Large-scale fabrication of ZnO micro-and nano-structures by microwave thermal evaporation deposition,” Journal of Crystal Growth, vol. 299, no. 1, pp. 34–40, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Liu, J. Cao, Z. Li, G. Ji, and M. Zheng, “A simple microwave-assisted decomposing route for synthesis of ZnO nanorods in the presence of PEG400,” Materials Letters, vol. 61, no. 22, pp. 4409–4411, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Cho, D. Shim, S. Jung, E. Oh, B. R. Lee, and K. Lee, “Fabrication of ZnO nanoneedle arrays by direct microwave irradiation,” Materials Letters, vol. 63, no. 9-10, pp. 739–741, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. Krishnakumar, Jayaprakash, N. Pinna, Singh, Mehta, and Phani, “Microwave-assisted synthesis and characterization of flower shaped zinc oxide nanostructures,” Materials Letters, vol. 63, no. 2, pp. 242–245, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. I. Y. Y. Bu, “Rapid synthesis of ZnO nanostructures through microwave heating process,” Ceramics International, vol. 39, pp. 1189–1194, 2013. View at Publisher · View at Google Scholar
  16. S. T. Aruna and A. S. Mukasyan, “Combustion synthesis and nanomaterials,” Current Opinion in Solid State and Materials Science, vol. 12, no. 3-4, pp. 44–50, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. Mohebbi, Ebadzadeh, and Hesari, “Synthesis of nano-crystalline (Ni/NiO)-YSZ by microwave-assisted combustion synthesis method: the influence of pH of precursor solution,” Journal of Power Sources, vol. 178, no. 1, pp. 64–68, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. M. A. Bhosale, K. D. Bhatte, and B. M. Bhanage, “A rapid, one pot microwave assisted synthesis of nanosize cuprous oxide,” Powder Technology, vol. 235, pp. 516–519, 2013. View at Publisher · View at Google Scholar
  19. P. Dinka and A. S. Mukasyan, “In situ preparation of oxide-based supported catalysts by solution combustion synthesis,” Journal of Physical Chemistry B, vol. 109, no. 46, pp. 21627–21633, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. Kasapoǧlu, Baykal, Köseoǧlu, and Toprak, “Microwave-assisted combustion synthesis of CoFe2O4 with urea, and its magnetic characterization,” Scripta Materialia, vol. 57, no. 5, pp. 441–444, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Ai and Jiang, “Rapid synthesis of nanocrystalline Co3O4 by a microwave-assisted combustion method,” Powder Technology, vol. 195, no. 1, pp. 11–14, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Fu, Y. Su, and C. Lin, “Comparison of microwave-induced combustion and solid-state reaction for synthesis of LiMn2-xCrxO4 powders and their electrochemical properties,” Solid State Ionics, vol. 166, no. 1-2, pp. 137–146, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Srivastava, Lakshmikumar, Srivastava, Rashmi, and K. Jain, “Gas sensing properties of nanocrystalline SnO2 prepared in solvent media using a microwave assisted technique,” Sensors and Actuators B, vol. 126, no. 2, pp. 583–587, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Fu, Y. Chang, and S. Wen, “Microwave-induced combustion synthesis and electrical conductivity of Ce1-xGdxO2-1/2x ceramics,” Materials Research Bulletin, vol. 41, no. 12, pp. 2260–2267, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Esmaeili, A. Khodadadi, and Y. Mortazavi, “Microwave-induced combustion process variables for MgO nanoparticle synthesis using polyethylene glycol and sorbitol,” Journal of the European Ceramic Society, vol. 29, no. 6, pp. 1061–1068, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Hwang and T. Wu, “Combustion synthesis of nanocrystalline ZnO powders using zinc nitrate and glycine as reactants - Influence of reactant composition,” Journal of Materials Science, vol. 39, no. 19, pp. 6111–6115, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Selvakumar and D. K. Bhat, “Microwave synthesized nanostructured TiO2-activated carbon composite electrodes for supercapacitor Selvakumar,” Applied Surface Science, vol. 263, pp. 236–241, 2012. View at Publisher · View at Google Scholar
  28. I. Bilecka, P. Elser, and M. Niederberger, “Kinetic and thermodynamic aspects in the microwave-assisted synthesis of ZnO nanoparticles in benzyl alcohol,” ACS Nano, vol. 3, no. 2, pp. 467–477, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Zhu, J. Zhang, Z. Wu, and Z. Zhang, “Microwave-assisted synthesis of various ZnO hierarchical nanostructures: effects of heating parameters of microwave oven,” Crystal Growth and Design, vol. 8, no. 9, pp. 3148–3153, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. N. F. Hamedani, A. R. Mahjoub, A. A. Khodadadi, and Y. Mortazavi, “Microwave assisted fast synthesis of various ZnO morphologies for selective detection of CO, CH4 and ethanol,” Sensors and Actuators B, vol. 156, no. 2, pp. 737–742, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. J. ZHU, J. ZHANG, H. ZHOU, W. QIN, L. CHAI, and Y. HU, “Microwave-assisted synthesis and characterization of ZnO-nanorod arrays,” Transactions of Nonferrous Metals Society of China (English Edition), vol. 19, no. 6, pp. 1578–1582, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. Savary, Marinel, Colder, Harnois, Lefevre, and Retoux, “Microwave sintering of nano-sized ZnO synthesized by a liquid route,” Powder Technology, vol. 208, no. 2, pp. 521–525, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. L. C. Nehru, V. Swaminathan, and C. Sanjeeviraja, “Rapid synthesis of nanocrystalline ZnO by a microwave-assisted combustion method,” Powder Technology, vol. 226, pp. 29–33, 2012. View at Publisher · View at Google Scholar
  34. Al-Hajry, A. Umar, Hahn, and Kim, “Growth, properties and dye-sensitized solar cells-applications of ZnO nanorods grown by low-temperature solution process,” Superlattices and Microstructures, vol. 45, no. 6, pp. 529–534, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Prakash, R. Jayaprakash, D. Sathya Raj et al., “Sensing properties of ZnO nanoparticles synthesized by using albumen as a biotemplate for acetic acid monitoring in aqueous mixture,” Sensors and Actuators B, vol. 176, pp. 560–568, 2013. View at Publisher · View at Google Scholar
  36. Vafaee and M. S. Ghamsari, “Preparation and characterization of ZnO nanoparticles by a novel sol-gel route,” Materials Letters, vol. 61, no. 14-15, pp. 3265–3268, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Umar, Rahman, M. Vaseem, and Y. Hahn, “Ultra-sensitive cholesterol biosensor based on low-temperature grown ZnO nanoparticles,” Electrochemistry Communications, vol. 11, no. 1, pp. 118–121, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Umar, Rahman, Al-Hajry, and Hahn, “Highly-sensitive cholesterol biosensor based on well-crystallized flower-shaped ZnO nanostructures,” Talanta, vol. 78, no. 1, pp. 284–289, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. A. E. Morales, E. S. Mora, and U. Pal, “Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures,” Revista Mexicana De Fisica S, vol. 53, pp. 18–22, 2007. View at Google Scholar
  40. Senthilkumar, Vickraman, and Ravikumar, “Synthesis of fluorine doped tin oxide nanoparticles by sol-gel technique and their characterization,” Journal of Sol-Gel Science and Technology, vol. 53, no. 2, pp. 316–321, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. F. Yakuphanoglu, “Electrical characterization and device characterization of ZnO microring shaped films by sol-gel method,” Journal of Alloys and Compounds, vol. 507, no. 1, pp. 184–189, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. Yakuphanoglu, Mehrotra, Gupta, and M. Oz, “Nanofiber organic semiconductors: the effects of nanosize on the electrical charge transport and optical properties of bulk polyanilines,” Journal of Applied Polymer Science, vol. 114, no. 2, pp. 794–799, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Tauc, R. Grigorovici, and A. Vancu, “Optical properties and electronic structure of amorphous germanium,” Physica Status Solidi B, vol. 15, pp. 627–637, 1966. View at Publisher · View at Google Scholar
  44. Wang, Chen, and Yang, “Microstructure and optical properties of polycrystalline ZnO films sputtered under different oxygen flow rates,” Journal of Alloys and Compounds, vol. 488, no. 1, pp. 232–237, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. A. K. Zak, M. E. Abrishami, W. H. Abd Majid, R. Yousefi, and S. M. Hosseini, “Effects of annealing temperature on some structural and optical properties of ZnO nanoparticles prepared by a modified sol-gel combustion method,” Ceramic International, vol. 37, pp. 393–398, 2011. View at Publisher · View at Google Scholar
  46. P. Yang, H. Yan, S. Mao et al., “Controlled growth of ZnO nanowires and their optical properties,” Journal of Advanced Functional Materials, vol. 12, pp. 323–331, 2002. View at Google Scholar
  47. P. Jiang, J. Zhou, H. Fang, C. Wang, Z. L. Wang, and S. Xie, “Hierarchical shelled ZnO structures made of bunched nanowire arrays,” Advanced Functional Materials, vol. 17, no. 8, pp. 1303–1310, 2007. View at Publisher · View at Google Scholar · View at Scopus