Table of Contents
Journal of Nanoparticles
Volume 2013, Article ID 310809, 7 pages
Research Article

Photocatalytic Properties of Microwave-Synthesized TiO2 and ZnO Nanoparticles Using Malachite Green Dye

1Nanomaterials and Sensors Laboratory, Defence Institute of Advanced Technology, Girinagar, Pune, Maharashtra 411025, India
2DRDO Centre for Piezoceramics and Devices, ARDE, Pashan, Pune, Maharashtra 411021, India

Received 11 January 2013; Accepted 17 January 2013

Academic Editor: Amir Kajbafvala

Copyright © 2013 A. K. Singh and Umesh T. Nakate. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


TiO2 and ZnO nanoparticles (NPs) were synthesized using microwave-assisted method. Synthesized NPs were characterized for their structure, morphology, and elemental composition using X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The crystallite size of synthesized NPs of TiO2 and ZnO was about 12.3 and 18.7 nm as obtained from the Scherrer formula from the most intense XRD peak. The synthesized NPs have been found to be in stoichiometric ratio having anatase and hexagonal wurtzite structure for TiO2 and ZnO, respectively, and are spherical in shape. Surface area of TiO2 and ZnO NPs was found to be about 43.52 m2/g and 7.7 m2/g. Photocatalytic (PC) properties of synthesized NPs were studied for malachite green (MG) dye under UV light. TiO2 NPs were found to be highly photocatalytically active among the two, having efficiency and apparent photodegradation rate of 49.35% and , respectively.