Table of Contents
Journal of Nanoparticles
Volume 2013 (2013), Article ID 531871, 13 pages
http://dx.doi.org/10.1155/2013/531871
Review Article

Naturally Self-Assembled Nanosystems and Their Templated Structures for Photonic Applications

Nanophotonics Lab, Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India

Received 25 January 2013; Accepted 24 February 2013

Academic Editor: Amir Kajbafvala

Copyright © 2013 K. Pradeesh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. M. Whitesides and M. Boncheva, “Beyond molecules: self-assembly of mesoscopic and macroscopic components,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 8, pp. 4769–4774, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. J. M. Lehn, “Toward self-organization and complex matter,” Science, vol. 295, no. 5564, pp. 2400–2403, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, and G. D. Stucky, “Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework,” Chemistry of Materials, vol. 11, no. 10, pp. 2813–2826, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Mahima, R. Kannan, I. Komath, M. Aslam, and V. K. Pillai, “Synthesis of platinum Y-junction nanostructures using hierarchically designed alumina templates and their enhanced electrocatalytic activity for fuel-cell applications,” Chemistry of Materials, vol. 20, no. 3, pp. 601–603, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. G. S. Attard, C. G. Göltner, J. M. Corker, S. Henke, and R. H. Templer, “Liquid-crystal templates for nanostructured metals,” Angewandte Chemie (International Edition in English), vol. 36, no. 12, pp. 1315–1317, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. K. J. Bachmann and J. L. Shay, “An InGaAs detector for the 1.0–1.7-μm wavelength range,” Applied Physics Letters, vol. 32, p. 446, 1978. View at Publisher · View at Google Scholar
  7. K. Pradeesh, J. J. Baumberg, and G. Vijaya Prakash, “In situ intercalation strategies for device-quality hybrid inorganic-organic self-assembled quantum wells,” Applied Physics Letters, vol. 95, no. 3, Article ID 033309, 2009. View at Google Scholar
  8. I. Saikumar, Shahab Ahmad, J. J. Baumberg, and G. Vijaya Prakash, “Fabrication of excitonic luminescent inorganic-organic hybrid nano- and microcrystals,” Scripta Materialia, vol. 67, no. 10, pp. 834–837, 2012. View at Publisher · View at Google Scholar
  9. Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chemical Reviews, vol. 99, pp. 1823–1848, 1999. View at Publisher · View at Google Scholar
  10. M. Trupke, F. Ramirez-Martinez, E. A. Curtis et al., “Pyramidal micromirrors for microsystems and atom chips,” Applied Physics Letters, vol. 88, no. 7, Article ID 071116, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Vijaya Prakash, R. Singh, A. Kumar, and R. K. Mishra, “Fabrication and characterisation of CdSe photonic structures from self-assembled templates,” Materials Letters, vol. 60, no. 13-14, pp. 1744–1747, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Vijaya Prakash, K. Pradeesh, A. Kumar et al., “Fabrication and optoelectronic characterisation of ZnO photonic structures,” Materials Letters, vol. 62, no. 8-9, pp. 1183–1186, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. R. V. Nair and R. Vijaya, “Three-dimensionally ordered photonic crystal heterostructures with a double photonic stop band,” Journal of Applied Physics, vol. 102, Article ID 056102, 3 pages, 2007. View at Publisher · View at Google Scholar
  14. R. V. Nair and R. Vijaya, “Structural and optical characterization of photonic crystals synthesized using the inward growing self-assembling method,” Applied Physics A, vol. 90, pp. 559–563, 2008. View at Publisher · View at Google Scholar
  15. M. C. Gonçalves, L. M. Fortes, R. M. Almeida, A. Chiasera, A. Chiappini, and M. Ferrari, “3-D rare earth-doped colloidal photonic crystals,” Optical Materials, vol. 31, no. 9, pp. 1315–1318, 2009. View at Publisher · View at Google Scholar
  16. L. Irimpan, V. P. N. Nampoori, P. Radhakrishnan, A. Deepthy, and B. Krishnan, “Size dependent fluorescence spectroscopy of nanocolloids of ZnO,” Journal of Applied Physics, vol. 102, no. 6, Article ID 063524, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Coyle, G. Vijaya Prakash, J. J. Baumberg, M. Abdelsalem, and P. N. Bartlet, “Spherical micromirrors from templated self-assembly: polarization rotation on the micron scale,” Applied Physics Letters, vol. 83, no. 4, p. 767, 2003. View at Publisher · View at Google Scholar
  18. V. Bulovic, G. Gu, P. E. Burrows, M. E. Thompson, and S. R. Forrest, “Transparent light-emitting devices,” Nature, vol. 380, p. 29, 1996. View at Publisher · View at Google Scholar
  19. G. Gu, V. Bulovic, P. E. Burrows, S. R. Forrest, and M. E. Thompson, “Transparent organic light emitting devices,” Applied Physics Letters, vol. 68, p. 2606, 1996. View at Publisher · View at Google Scholar
  20. V. Bulović, V. G. Kozlov, V. B. Khalfin, and S. R. Forrest, “Transform-limited, narrow-linewidth lasing action in organic semiconductor microcavities,” Science, vol. 279, no. 5350, pp. 553–555, 1998. View at Publisher · View at Google Scholar · View at Scopus
  21. V. G. Kozlov, V. Bulović, P. E. Burrows, and S. R. Forrest, “Laser action, in organic semiconductor waveguide and double- heterostructure devices,” Nature, vol. 389, no. 6649, pp. 362–364, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. W. Brütting, Ed., Physics of Organic Semiconductors, Wiley-VCH, Weinheim, Germany, 2005.
  23. M. Furuki, M. Tian, Y. Sato et al., “Observation of sub-100-fs optical response from spin-coated films of squarylium dye J aggregates,” Applied Physics Letters, vol. 78, no. 18, pp. 2634–2636, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Misawa, H. Ono, K. Minoshima, and T. Kobayashi, “New fabrication method for highly oriented J aggregates dispersed in polymer films,” Applied Physics Letters, vol. 63, no. 5, pp. 577–579, 1993. View at Publisher · View at Google Scholar · View at Scopus
  25. F. Sasaki, S. Kobayashi, and S. Haraichi, “Enhancement of the optical nonlinearity in pseudoisocyanine J aggregates embedded in distributed feedback microcavities,” Applied Physics Letters, vol. 81, p. 391, 2002. View at Publisher · View at Google Scholar
  26. A. Eilmes, “Excited-state polarizability of J-aggregates,” Chemical Physics Letters, vol. 347, no. 1–3, pp. 205–210, 2001. View at Publisher · View at Google Scholar
  27. N. Fukutake, S. Takasaka, and T. Kobayashi, “Energy transfer between two kinds of J-aggregates studied by near-field absorption-fluorescence spectroscopy,” Chemical Physics Letters, vol. 361, no. 1-2, pp. 42–48, 2002. View at Publisher · View at Google Scholar
  28. P. Gomez-Romero, “Hybrid organic-inorganic materials-in search of synergic activity,” Advanced Materials, vol. 13, no. 3, pp. 163–174, 2001. View at Publisher · View at Google Scholar
  29. E. Fois, A. Gamba, and A. Tilocca, “On the unusual stability of Maya blue paint: molecular dynamics simulations,” Microporous and Mesoporous Materials, vol. 57, no. 3, pp. 263–272, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. D. E. Arnold, J. R. Branden, P. R. Williams, G. M. Feinman, and J. P. Brown, “The first direct evidence for the production of Maya Blue: rediscovery of a technology,” Antiquity, vol. 82, no. 315, pp. 151–164, 2008. View at Google Scholar · View at Scopus
  31. K. S. Aleksandrov and V. V. Beznosikov, “Hierarchies of perovskite-like crystals,” Physics of the Solid State, vol. 39, no. 5, pp. 695–715, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. D. B. Mitzi, “Synthesis, structure, and properties of organic-inorganic perovskites and related materials,” Progress in Inorganic Chemistry, vol. 48, p. 1, 1999. View at Publisher · View at Google Scholar
  33. D. B. Mitzi, “Organic-inorganic perovskites containing trivalent metal halide layers:  the templating influence of the organic cation layer,” Inorganic Chemistry, vol. 39, no. 26, pp. 6107–6113, 2000. View at Publisher · View at Google Scholar
  34. A. Poglitsch and D. Weber, “Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy,” The Journal of Chemical Physics, vol. 87, no. 11, pp. 6373–6378, 1987. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Weber, “CH3NH3PBX3, a Pb(II)-system with cubic perovskite structure,” Zeitschrift für Naturforschung B, vol. 33, pp. 1443–1445, 1978. View at Google Scholar
  36. S. Wang, D. B. Mitzi, G. A. Landrum, H. Genin, and R. Hoffmann, “Synthesis and solid state chemistry of CH3BiI2: a structure with an extended one-dimensional organometallic framework,” Journal of the American Chemical Society, vol. 119, no. 4, pp. 724–732, 1997. View at Publisher · View at Google Scholar · View at Scopus
  37. D. B. Mitzi, “Synthesis and crystal structure of the alkylbismuth diiodides:  a family of extended one-dimensional organometallic compounds,” Inorganic Chemistry, vol. 35, no. 26, pp. 7614–7619, 1996. View at Publisher · View at Google Scholar
  38. E. O. Schlemper and W. C. Hamilton, “The crystal structure of dimethyltin dilfluoride. An example of octahedral coordination of tin,” Inorganic Chemistry, vol. 5, no. 6, pp. 995–998, 1966. View at Publisher · View at Google Scholar
  39. X. Huang, J. Li, and H. Fu, “The first covalent organic-inorganic networks of hybrid chalcogenides: structures that may lead to a new type of quantum wells,” Journal of the American Chemical Society, vol. 122, no. 36, pp. 8789–8790, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. F. Chiarella, R. Mosca, M. Pavesi, A. Zappettini, P. Ferro, and F. Licci, “Enhanced luminescence of CuCl microcrystals in a organic-inorganic hybrid matrix,” Applied Physics A, vol. 88, no. 2, pp. 235–237, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Eraa, K. Miyakea, Y. Yoshidac, and K. Yase, “Orientation of azobenzene chromophore incorporated into metal halide-based layered perovskite having organic-inorganic superlattice structure,” Thin Solid Films, vol. 393, pp. 24–27, 2001. View at Publisher · View at Google Scholar
  42. N. F. Stephens, A. M. Z. Slawin, and P. Lightfoot, “A novel scandium fluoride, [C2N2H10](0.5)[ScF4], with an unprecedented tungsten bronze-related layer structure,” Chemical Communications, no. 5, pp. 614–615, 2004. View at Publisher · View at Google Scholar
  43. M. Szafrafiski, “Investigation of phase instabilities in guanidinium halogenoplumbates(II),” Thermochimica Acta, vol. 307, no. 2, pp. 177–183, 1997. View at Publisher · View at Google Scholar
  44. R. Kind, “Phase transitions and incommensurability in crystalline model bilayers,” Berichte der Bunsengesellschaft für physikalische Chemie, vol. 87, pp. 248–254, 1983. View at Publisher · View at Google Scholar
  45. J. Etxebarria, J. Fernandez, M. A. Arriandiaga, and M. J. Tello, “Influence of the thermal expansion on the piezoelectric photoacoustic detection of ferro-paraelastic phase transition in (CH3CH2NH3)2CuCl4,” Journal of Physics C, vol. 18, no. 1, pp. L13–L17, 1985. View at Publisher · View at Google Scholar · View at Scopus
  46. T. Goto, B. Lthi, R. Geick, and K. Strobel, “Elastic soft mode in perovskite-type layer-structure materials,” Physical Review B, vol. 22, no. 7, pp. 3452–3458, 1980. View at Publisher · View at Google Scholar · View at Scopus
  47. N. Mercier, N. Louvain, and W. Bi, “Structural diversity and retro-crystal engineering analysis of iodometalate hybrids,” CrystEngComm, vol. 11, no. 5, pp. 720–734, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. D. B. Mitzi, “Templating and structural engineering in organic-inorganic perovskites,” Journal of the Chemical Society, Dalton Transactions, no. 1, pp. 1–12, 2001. View at Publisher · View at Google Scholar
  49. D. B. Mitzi, C. D. Dimitrakopoulos, and L. L. Kosbar, “Structurally tailored organic-inorganic perovskites: optical properties and solution-processed channel materials for thin-film transistors,” Chemistry of Materials, vol. 13, no. 10, pp. 3728–3740, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. T. Fujita, H. Nakashima, M. Hirasawa, and T. Ishihara, “Ultrafast photoluminescence from (C6H5C2H4NH3)2PbI4,” Journal of Luminescence, vol. 87, pp. 847–849, 2000. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Shimizu, J. Fujisawa, and T. Ishihara, “Photoluminescene of the inorganic-organic layered semiconductor (C6H5C2H4NH3)2PbI4: observation of triexciton formation,” Physical Review B, vol. 74, Article ID 155206, 6 pages, 2006. View at Publisher · View at Google Scholar
  52. M. Shimizu, J. I. Fujisawa, and T. Ishihara, “Nonlinear luminescence from an inorganic-organic layered semiconductor,” Journal of Luminescence, vol. 122-123, no. 1-2, pp. 485–487, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. T. Ishihara, “Optical properties of PbI-based perovskite structures,” Journal of Luminescence, vol. 60-61, pp. 269–274, 1994. View at Publisher · View at Google Scholar
  54. G. A. Mousdis, G. C. Papavassiliou, C. P. Raptopouloub, and A. Terzis, “Preparation and characterization of [H3N(CH2)6NH3]PbI4 and similar compounds with a layered perovskite structure,” Journal of Materials Chemistry, vol. 10, pp. 515–518, 2000. View at Publisher · View at Google Scholar
  55. G. C. Papavassiliou, I. B. Koutselas, A. Terzis, and M. H. Whangbo, “Structural and electronic properties of the natural quantum-well system (C6H5CH2CH2NH3)2SnI4,” Solid State Communicationsications, vol. 91, no. 9, pp. 695–698, 1994. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Lemmerer and D. G. Billing, “Two packing motifs based upon chains of edge-sharing PbI6 octahedra,” Acta Crystallographica Section C, vol. 62, no. 12, p. m597, 2006. View at Google Scholar
  57. C. P. Raptopoulou, A. Terzis, G. A. Mousdis, and G. C. Papavassiliou, “Preparation, structure and optical properties of [CH3SC(NH2)2]3SnI5, [CH3SC(NH2)2][HSC(NH2)2]SnBr4, (CH3C5H4NCH3)PbBr3, and [C6H5CH2SC(NH2)2]4Pb3I10,” Zeitschrift für Naturforschung B, vol. 57, pp. 645–650, 2002. View at Google Scholar
  58. G. C. Papavassiliou, G. A. Mousdis, A. Terzis, and C. P. Raptopoulou, “Crystal structure and optical properties of 4-[4-(dimethylamino)-styryl]-1-methyl-pyridinium lead tribromide,” Zeitschrift für Naturforschung B, vol. 58, pp. 815–816, 2003. View at Google Scholar
  59. G. C. Papavassiliou, G. A. Mousdis, I. Koutselas et al., “Some new synthetic low-dimensional semiconductors based on inorganic units,” Advanced Materials for Optics and Electronics, vol. 8, no. 5, pp. 263–267, 1998. View at Publisher · View at Google Scholar · View at Scopus
  60. C. Xu, S. Fukuta, H. Sakakura et al., “Anomalous electro-absorption in the low-temperature phase of (C10H21NH3)2PbI4,” Solid State Communications, vol. 77, pp. 923–926, 1991. View at Publisher · View at Google Scholar
  61. M. Era, S. Morimoto, T. Tsutsui, and S. Saito, “Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4,” Applied Physics Letters, vol. 65, pp. 676–3, 1994. View at Publisher · View at Google Scholar
  62. K. Morii, M. Ishida, T. Takashima et al., “Encapsulation-free hybrid organic-inorganic light-emitting diodes,” Applied Physics Letters, vol. 89, no. 18, Article ID 183510, 3 pages, 2006. View at Google Scholar
  63. K. Chondroudis and D. B. Mitzi, “Electroluminescence from an organic-inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers,” Chemistry of Materials, vol. 11, no. 11, pp. 3028–3030, 1999. View at Publisher · View at Google Scholar · View at Scopus
  64. T. Hattori, T. Taira, M. Era, T. Tsutsui, and S. Saito, “Highly efficient electroluminescence from a heterostructure device combined with emissive layered-perovskite and an electron-transporting organic compound,” Chemical Physics Letters, vol. 254, pp. 103–108, 1996. View at Publisher · View at Google Scholar
  65. K. Saruwatari, H. Sato, T. Idei et al., “Photoconductive properties of organic-inorganic hybrid films of layered perovskite-type niobate,” Journal of Physical Chemistry B, vol. 109, no. 25, pp. 12410–12416, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. W. E. Mahmoud, “A novel photodiode made of hybrid organic/inorganic nanocomposite,” Journal of Physics D, vol. 42, no. 15, Article ID 155502, 2009. View at Publisher · View at Google Scholar
  67. A. M. Guloy, Z. Tang, P. B. Miranda, and V. I. Srdanov, “A new luminescent organic-inorganic hybrid compound with large optical nonlinearity,” Advanced Materials, vol. 13, pp. 833–837, 2001. View at Publisher · View at Google Scholar
  68. M. Shimizu, J. Fujisawa, and J. Ishi-Hayase, “Influence of the dielectric confinement on excitonic nonlinearity in inorganic-organic layered semiconductors,” Physical Review B, vol. 71, no. 20, Article ID 205306, 9 pages, 2005. View at Publisher · View at Google Scholar
  69. M. Shimizu, N. A. Gippius, S. G. Tikhodeev, and T. Ishihara, “Coulomb correction to the dressed exciton in an inorganic-organic layered semiconductor: detuning dependence of the Stark shift,” Physical Review B, vol. 69, no. 15, Article ID 155201, 5 pages, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. C. Q. Xu, H. Sakakura, T. Kondo et al., “Magneto-optical effects of excitons in (C10H21NH3)2PbI4 under high magnetic fields up to 40 T,” Solid State Communicationsications, vol. 79, no. 3, pp. 249–253, 1991. View at Publisher · View at Google Scholar · View at Scopus
  71. T. Sekine, T. Okuno, and K. Awaga, “Observation of spontaneous magnetization in the layered perovskite ferromagnet, (p-Chloroanilinium)2CuBr4,” Inorganic Chemistry, vol. 37, no. 9, pp. 2129–2133, 1998. View at Publisher · View at Google Scholar · View at Scopus
  72. K. Tanaka, T. Takahashi, T. Kondo et al., “Electronic and excitonic structures of inorganic-organic perovskite-type quantum-well crystal (C4H9NH3)2PbBr4,” Japanese Journal of Applied Physics, vol. 44, no. 8, pp. 5923–5932, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. J. Fujisawa and T. Ishihara, “Excitons and biexcitons bound to a positive ion in a bismuth-doped inorganic-organic layered lead iodide semiconductor,” Physical Review B, vol. 70, no. 20, Article ID 205330, 6 pages, 2004. View at Google Scholar
  74. Y. Kato, D. Ichii, K. Ohashi et al., “Extremely large binding energy of biexcitons in an organic-inorganic quantum-well material (C4H9NH3)2PbBr4,” Solid State Communicationsications, vol. 128, no. 1, pp. 15–18, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. T. Goto, H. Makino, T. Yao et al., “Localization of triplet excitons and biexcitons in the two-dimensional semiconductor (CH3C6H4CH2NH3)2PbBr4,” Physical Review B, vol. 73, no. 11, Article ID 115206, pp. 1–5, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. T. Kondo, T. Azuma, T. Yuasa, and R. Ito, “Biexciton lasing in the layered perovskite-type material (C6H13NH3)2PbI4,” Solid State Communicationsications, vol. 105, no. 4, pp. 253–255, 1998. View at Publisher · View at Google Scholar · View at Scopus
  77. D. B. Mitzi, K. Chondroudis, and C. R. Kagan, “Organic-inorganic electronics,” IBM Journal of Research and Development, vol. 45, no. 1, pp. 29–45, 2001. View at Publisher · View at Google Scholar · View at Scopus
  78. C. R. Kagan, D. B. Mitzi, and C. D. Dimitrakopoulos, “Organic-inorganic hybrid materials as semiconducting channels in thin- film field-effect transistors,” Science, vol. 286, no. 5441, pp. 945–947, 1999. View at Publisher · View at Google Scholar · View at Scopus
  79. K. Shibuya, M. Koshimizu, Y. Takeoka, and K. Asai, “Scintillation properties of (C6H13NH3)2PbI4: exciton luminescence of an organic/inorganic multiple quantum well structure compound induced by 2.0 MeV protons,” Nuclear Instruments and Methods in Physics Research B, vol. 194, pp. 207–212, 2002. View at Publisher · View at Google Scholar
  80. D. B. Mitzi, Functional Hybrid Materials, Wiley, Weinheim, Germany, 2004, edited by P. G. Romero and C. Sanchez.
  81. G. Vijaya Prakash, K. Pradeesh, R. Ratnani, K. Saraswat, M. E. Light, and J. J. Baumberg, “Structural and optical studies of local disorder sensitivity in natural organic-inorganic self-assembled semiconductors,” Journal of Physics D, vol. 42, no. 18, Article ID 185405, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. V. K. Dwivedi, J. J. Baumberg, and G. Vijaya Prakash, “Direct deposition of inorganic-organic hybrid semiconductors and their template-assisted microstructures,” Materials Chemistry and Physics, vol. 137, no. 3, pp. 941–946, 2013. View at Publisher · View at Google Scholar
  83. Y. Kawabata, M. Yoshizawa-Fujita, Y. Takeoka, and M. Rikukawa, “Relationship between structure and optoelectrical properties of organic-inorganic hybrid materials containing fullerene derivatives,” Synthetic Metals, vol. 159, no. 9-10, pp. 776–779, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. T. Ishihara, J. Takahanshi, and T. Goto, “Optical properties due to electronic transitions in two-dimensional semiconductors (CnH2n+1NH3)2PbI4,” Physical Review B, vol. 42, pp. 11099–11107, 1990. View at Publisher · View at Google Scholar
  85. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nature Photonics, vol. 1, no. 8, pp. 449–458, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. D. B. Mitzi, C. A. Feild, W. T. A. Harrison, and A. M. Guloy, “Conducting tin halides with a layered organic-based perovskite structure,” Nature, vol. 369, no. 6480, pp. 467–469, 1994. View at Publisher · View at Google Scholar · View at Scopus
  87. D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess, and A. M. Guloy, “Conducting layered organic-inorganic halides containing 110-oriented perovskite sheets,” Science, vol. 267, no. 5203, pp. 1473–1476, 1995. View at Publisher · View at Google Scholar · View at Scopus
  88. Z. Xu, D. B. Mitzi, C. D. Dimitrakopoulos, and K. R. Maxcy, “Semiconducting perovskites (2-XC6H4C2H4NH3)2SnI4 (X = F, Cl, Br):  steric interaction between the organic and inorganic layers,” Inorganic Chemistry, vol. 42, pp. 2031–2039, 2003. View at Publisher · View at Google Scholar
  89. D. B. Mitzi, D. R. Medeiros, and P. R. L. Malenfant, “Intercalated organic-inorganic perovskites stabilized by fluoroaryl-aryl interactions,” Inorganic Chemistry, vol. 41, no. 8, pp. 2134–2145, 2002. View at Publisher · View at Google Scholar · View at Scopus
  90. K. Tanakaa, T. Takahashia, T. Bana, T. Kondoa, K. Uchidab, and N. Miura, “Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3,” Solid State Communicationsications, vol. 127, p. 619, 2003. View at Publisher · View at Google Scholar
  91. Z. Xu, D. B. Mitzi, and D. R. Medeiros, “[(CH3)3NCH2CH2NH3] SNI4: a layered perovskite with quaternary/primary ammonium dications and short interlayer iodine-iodine contacts,” Inorganic Chemistry, vol. 42, no. 5, pp. 1400–1402, 2003. View at Publisher · View at Google Scholar · View at Scopus
  92. A. Lemmerer and D. G. Billing, “P-phenylenediammonium tetraiodozincate(II) dihydrate,” Acta Crystallographica Section E, vol. 62, no. 4, pp. m779–m781, 2006. View at Publisher · View at Google Scholar · View at Scopus
  93. A. Lemmerer and D. G. Billing, “Two packing motifs based upon chains of edge-sharing PbI6 octahedra,” Acta Crystallographica Section C, vol. 62, no. 12, pp. m597–m601, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. H. Krautscheid, C. Lode, F. Vielsack, and H. Vollmer, “Synthesis and crystal structures of iodoplumbate chains, ribbons and rods with new structural types,” Journal of the Chemical Society, Dalton Transactions, no. 7, pp. 1099–1104, 2001. View at Google Scholar · View at Scopus
  95. T. Matsui, A. Yamaguchi, Y. Takeoka, M. Rikukawa, and K. Sanui, “Fabrication of two-dimensional layered perovskite [NH3(CH2)12NH3]PbX4 thin films using a self-assembly method,” Chemical Communications, no. 10, pp. 1094–1095, 2002. View at Google Scholar · View at Scopus
  96. T. Matsushima, K. Fujita, and T. Tsutsui, “High field-effect hole mobility in organic-inorganic hybrid thin films prepared by vacuum vapor deposition technique,” Japanese Journal of Applied Physics, vol. 43, pp. L1199–L1201, 2004. View at Publisher · View at Google Scholar
  97. K. Ikegami, “Spectroscopic study of J aggregates of amphiphilic merocyanine dyes formed in their pure Langmuir films,” Journal of Chemical Physics, vol. 121, p. 2337, 2004. View at Publisher · View at Google Scholar
  98. D. B. Mitzi, M. T. Prikas, and K. Chondroudis, “Thin film deposition of organic-inorganic hybrid materials using a single source thermal ablation technique,” Chemistry of Materials, vol. 11, no. 3, pp. 542–544, 1999. View at Publisher · View at Google Scholar · View at Scopus
  99. Z. Y. Cheng, H. F. Wang, Z. W. Quan, C. K. Lin, J. Lin, and Y. C. Han, “Layered organic-inorganic perovskite-type hybrid materials fabricated by spray pyrolysis route,” Journal of Crystal Growth, vol. 285, no. 3, pp. 352–357, 2005. View at Publisher · View at Google Scholar · View at Scopus
  100. D. B. Mitzi, D. R. Medeiros, and P. W. DeHaven, “Low-temperature melt processing of organic-inorganic hybrid films,” Chemistry of Materials, vol. 14, no. 7, pp. 2839–2841, 2002. View at Publisher · View at Google Scholar · View at Scopus
  101. J. E. Gieseking, “The mechanism of cation exchange in the montmorillonite-beidellite-nontronite type of clay minerals,” Soil Science, vol. 47, no. 1, pp. 1–14, 1939. View at Publisher · View at Google Scholar
  102. D. M. C. MacEwan, “Identification of the montmorillonite group of minerals by X-rays,” Nature, vol. 154, no. 3914, pp. 577–578, 1944. View at Google Scholar · View at Scopus
  103. W. F. Bradley, “Molecular associations between montmorillonite and some polyfunctional organic liquids,” Journal of the American Chemical Society, vol. 67, no. 6, pp. 975–981, 1945. View at Publisher · View at Google Scholar
  104. E. Ruiz-Hitzky, Functional Hybrid Materials, Wiley, Weinheim, Germany, 2004, edited by P. G. Romero and C. Sanchez.
  105. T. Ishihara, J. Takahashi, and T. Goto, “Exciton state in two-dimensional perovskite semiconductor (C10H21NH3)2PbI4,” Solid State Communicationsications, vol. 69, no. 9, pp. 933–936, 1989. View at Publisher · View at Google Scholar · View at Scopus
  106. L. C. Thanh, C. Depeursinge, F. Levy, and E. Mooser, “The band gap excitons in PbI2,” Journal of Physics and Chemistry of Solids, vol. 36, no. 7-8, pp. 699–702, 1975. View at Publisher · View at Google Scholar · View at Scopus
  107. L. V. Keldysh, “Coulomb interaction in thin semiconductor and semimetal films,” Journal of Experimental and Theoretical Physics, vol. 29, p. 658, 1979. View at Google Scholar
  108. E. Hanamura, N. Nagaosa, M. Kumagai, and T. Takagahara, “Quantum wells with enhanced exciton effects and optical non-linearity,” Materials Science and Engineering B, vol. 1, no. 3-4, pp. 255–258, 1988. View at Publisher · View at Google Scholar · View at Scopus
  109. A. Piryatinski, S. A. Ivanov, S. Tretiak, and V. I. Klimov, “Effect of quantum and dielectric confinement on the exciton-exciton interaction energy in type II core/shell semiconductor Nanocrystals,” Nano Letters, vol. 7, pp. 108–115, 2007. View at Publisher · View at Google Scholar
  110. K. Pradeesh, K. Nageswara Rao, and G. Vijaya Prakash, “Synthesis, structural, thermal and optical studies of inorganic-organic hybrid semiconductors, R-PbI4,” Journal of Applied Physics, vol. 113, no. 8, Article ID 083523, 9 pages, 2013. View at Publisher · View at Google Scholar
  111. M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, “Strong coupling phenomena in quantum microcavity structures,” Semiconductor Science and Technology, vol. 13, p. 645, 1998. View at Publisher · View at Google Scholar
  112. K. Pradeesh, J. J. Baumberg, and G. Vijaya Prakash, “Exciton switching and Peierls transitions in hybrid inorganic-organic self-assembled quantum wells,” Applied Physics Letters, vol. 2, no. 10, Article ID 173305, 3 pages, 2009. View at Publisher · View at Google Scholar
  113. K. Pradeesh, J. J. Baumberg, and G. Vijaya Prakash, “Strong exciton-photon coupling in inorganic-organic multiple quantum wells embedded low-Q microcavity,” Optics Express, vol. 17, no. 24, pp. 22171–22178, 2009. View at Publisher · View at Google Scholar · View at Scopus
  114. K. Pradeesh, M. Agarwal, K. K. Rao, and G. Vijaya Prakash, “Synthesis, crystal structure and optical properties of quasi-one-dimensional lead (II) iodide: C14H18N2Pb2I6,” Solid State Sciences, vol. 12, no. 1, pp. 95–98, 2010. View at Publisher · View at Google Scholar · View at Scopus
  115. K. Pradeesh, G. S. Yadav, M. Singh, and G. Vijaya Prakash, “Synthesis, structure and optical studies of inorganic-organic hybrid semiconductor, NH3(CH2)12NH3PbI4,” Materials Chemistry and Physics, vol. 124, no. 1, pp. 44–47, 2010. View at Publisher · View at Google Scholar · View at Scopus
  116. S. Barman, N. V. Venkataraman, S. Vasudevan, and R. Seshadri, “Phase transitions in the anchored organic bilayers of long-chain alkylammonium lead iodides (CnH2n+1 NH3)2PbI4; n = 12, 16, 18,” The Journal of Physical Chemistry B, vol. 107, no. 8, pp. 1875–1883, 2003. View at Publisher · View at Google Scholar
  117. K. Gauthron, J. S. Lauret, L. Doyennette et al., “Optical spectroscopy of two-dimensional layered (C6H5C2H4-NH3)2-PbI4 perovskite,” Optics Express, vol. 18, no. 6, pp. 5912–5919, 2010. View at Publisher · View at Google Scholar · View at Scopus
  118. D. G. Billing and A. Lemmerer, “Synthesis, characterization and phase transitions of the inorganic-organic layered perovskite-type hybrids [(CnH2n+1 NH3)2PbI4] (n = 12, 14, 16 and 18),” New Journal of Chemistry, vol. 32, pp. 1736–1746, 2008. View at Publisher · View at Google Scholar
  119. S. Zhang, G. Lanty, J. S. Lauret, E. Deleporte, P. Audebert, and L. Galmiche, “Synthesis and optical properties of novel organic-inorganic hybrid nanolayer structure semiconductors,” Acta Materialia, vol. 57, no. 11, pp. 3301–3309, 2009. View at Publisher · View at Google Scholar
  120. I. Zhitomirsky, L. Gal-Or, A. Kohn, and H. W. Hennicke, “Electrochemical preparation of PbO films,” Journal of Materials Science Letters, vol. 14, no. 11, pp. 807–810, 1995. View at Publisher · View at Google Scholar · View at Scopus
  121. T. K. Chaudhuri and H. N. Acharya, “Preparation of lead iodide films by iodination of chemically deposited lead sulphide films,” Materials Research Bulletin, vol. 17, no. 3, pp. 279–286, 1982. View at Publisher · View at Google Scholar
  122. G. D. Currie, J. Mudar, and O. Risgin, “Photoconductive and photovoltaic spectral response in Pbl2 crystals,” Applied Optics, vol. 6, no. 6, pp. 1137–1138, 1967. View at Publisher · View at Google Scholar
  123. A. E. Dugan and H. K. Hknisch, “Defect energy-level structure of PbI2 single crystals,” Physical Review, vol. 171, no. 3, pp. 1047–1051, 1968. View at Publisher · View at Google Scholar