About this Journal Submit a Manuscript Table of Contents

This paper has been retracted as it was accepted for publication on the basis of peer review reports that were submitted from fraudulent reviewer accounts.

In late 2014, a number of publishers discovered widespread abuse of the peer review process, including cases of identity theft and faked review reports. In July 2015, Hindawi concluded an extensive investigation into peer review fraud and identified a number of articles that had been accepted on the basis of fraudulent peer review reports. In accordance with the recommendations of the Committee on Publication Ethics (COPE), Hindawi sent these manuscripts for re-review using independent Editorial Board Members. Following this re-review process, this article has been retracted as it was deemed unsuitable for publication.

Journal of Nanoparticles
Volume 2013 (2013), Article ID 549502, 5 pages
Research Article

Green Chemistry Approach for Efficient Synthesis of Schiff Bases of Isatin Derivatives and Evaluation of Their Antibacterial Activities

1Department of Pharmaceutical Chemistry, Roland Institute of Pharmaceutical Sciences and Berhampur, Odisha 760010, India
2University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study (CAS), Panjab University, Chandigarh 160014, India

Received 31 December 2012; Accepted 12 January 2013

Academic Editor: Amir Kajbafvala

Copyright © 2013 Jnyanaranjan Panda et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Microwave-assisted organic synthesis, a green chemistry approach, is nowadays widely used in the drug synthesis. Microwave-assisted synthesis improves both throughput and turnaround time for medicinal chemists by offering the benefits of drastically reduced reaction times, increased yields, and pure products. Schiff bases are the important class of organic compounds due to their flexibility, and structural diversities due to the presence of azomethine group which is helpful for elucidating the mechanism of transformation and rasemination reaction in biological system. This novel compound could also act as valuable ligands for the development of new chemical entities. In the present work, some Schiff bases of Isatin derivatives was synthesized using microwave heating method. Schiff base of Isatin were synthesized by condensation of the keto group of Isatin with different aromatic primary amines. They were characterized by means of spectral data and subsequently subjected to the in vitro antibacterial activities against gram positive and gram negative strains of microbes. It was observed that the compound with electron withdrawing substituents exhibited good antibacterial activities against almost all the micro organisms.