Table of Contents
Journal of Nanoparticles
Volume 2013, Article ID 672059, 24 pages
http://dx.doi.org/10.1155/2013/672059
Review Article

Recent Advancement in Functional Core-Shell Nanoparticles of Polymers: Synthesis, Physical Properties, and Applications in Medical Biotechnology

1Nanoscience and Technology, School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad, Andhra Pradesh 500046, India
2Materials Engineering, School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad, Andhra Pradesh 500046, India

Received 13 December 2012; Accepted 3 February 2013

Academic Editor: John Z. Guo

Copyright © 2013 K. Santhosh Kumar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chemical Reviews, vol. 105, pp. 1025–1102, 2005. View at Google Scholar
  2. P. V. Kamat, “Photophysical, photochemical and photocatalytic aspects of metal nanoparticles,” Journal of Physical Chemistry B, vol. 106, no. 32, pp. 7729–7744, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Frederix, J. M. Friedt, K. H. Choi et al., “Biosensing based on light absorption of nanoscaled gold and silver particles,” Analytical Chemistry, vol. 75, no. 24, pp. 6894–6900, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Praharaj, S. Nath, S. K. Ghosh, S. Kundu, and T. Pal, “Immobilization and recovery of Au nanoparticles from anion exchange resin: resin-bound nanoparticle matrix as a catalyst for the reduction of 4-nitrophenol,” Langmuir, vol. 20, no. 23, pp. 9889–9892, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. C. T. Campbell, S. C. Parker, and D. E. Starr, “The effect of size-dependent nanoparticle energetics on catalyst sintering,” Science, vol. 298, no. 5594, pp. 811–814, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. T. A. Skotheim, Handbook of Conducting Polymers, vol. 1, 1986.
  7. M. G. Kanatzidis, “Polymeric electrical conductors,” Chemical and Engineering News, vol. 1990, pp. 36–54, 1990. View at Google Scholar
  8. P. Andersson, R. Forchheimer, P. Tehrani, and M. Berggren, “Printable all-organic electrochromic active-matrix displays,” Advanced Functional Materials, vol. 17, no. 16, pp. 3074–3082, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Liu and T. Cui, “Polymeric integrated AC follower circuit with a JFET as an active device,” Solid-State Electronics, vol. 49, no. 3, pp. 445–448, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. S. K. Lee, J. M. Cho, Y. Goo et al., “Synthesis and characterization of a thiazolo[5,4-d]thiazole-based copolymer for high performance polymer solar cells,” Chemical Communications, vol. 47, no. 6, pp. 1791–1793, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. L. L. Chua, J. Zaumseil, J. F. Chang et al., “General observation of n-type field-effect behaviour in organic semiconductors,” Nature, vol. 434, no. 7030, pp. 194–199, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. H. N. Tsao, D. Cho, J. W. Andreasen et al., “The influence of morphology on high-performance polymer field-effect transistors,” Advanced Materials, vol. 21, no. 2, pp. 209–212, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Yang, P. Liu, and W. Tingmei, “Well-defined core-shell carbon black/polypyrrolenanocomposites for electrochemical energy storage,” ACS Applied Materials & Interfaces, vol. 3, pp. 1109–1114, 2011. View at Google Scholar
  14. L. Xie, X. Huang, C. Wu, and P. Jiang, “Core-shell structured poly(methyl methacrylate)/BaTiO3 nanocomposites prepared by in situ atom transfer radical polymerization: a route to high dielectric constant materials with the inherent low loss of the base polymer,” Journal of Materials Chemistry, vol. 21, no. 16, pp. 5897–5906, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. Q. Rong, A. Zhu, and T. Zhong, “Poly (styrene-n-butyl acrylate-methyl methacrylate)/silica nanocomposites prepared by emulsion polymerization,” Journal of Applied Polymer Science, vol. 120, no. 6, pp. 3654–3661, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. V. V. Annenkov, E. N. Danilovtseva, V. A. Pal'shin et al., “Poly(vinyl amine)-silica composite nanoparticles: models of the silicic acid cytoplasmic pool and as a silica precursor for composite materials formation,” Biomacromolecules, vol. 12, no. 5, pp. 1772–1780, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Chen, X. Jiang, R. Liu, and J. Yin, “Well-defined PMMA brush on silica particles fabricated by surface-initiated photopolymerization (SIPP),” ACS Applied Materials and Interfaces, vol. 2, no. 4, pp. 1031–1037, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Reiss, E. Couderc, J. De Girolamo, and A. Pron, “Conjugated polymers/semiconductor nanocrystals hybrid materials—Preparation, electrical transport properties and applications,” Nanoscale, vol. 3, no. 2, pp. 446–489, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Allouche, A. Le Beulze, J. C. Dupin, J. B. Ledeuil, S. Blanc, and D. Gonbeau, “Hybrid spiropyran-silica nanoparticles with a core-shell structure: sol-gel synthesis and photochromic properties,” Journal of Materials Chemistry, vol. 20, no. 42, pp. 9370–9378, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Jin, X. Miu, X. Yu, L. Wang, N. Wang, and L. Wang, “Synthesis of core-shell microspheres of poly(methyl methacrylate)-CuO by solution deposition method,” Materials Chemistry and Physics, vol. 124, no. 1, pp. 69–72, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. V. A. Bershtein, V. M. Gun'ko, L. M. Egorova et al., “Well-defined oxide core-polymer shell nanoparticles: interfacial interactions, peculiar dynamics, and transitions in polymer nanolayers,” Langmuir, vol. 26, no. 13, pp. 10968–10979, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. X. Chen, Z. Zhou, W. Lv, T. Huang, and S. Hu, “Preparation of core-shell structured T-ZnOw/polyaniline composites via graft polymerization,” Materials Chemistry and Physics, vol. 115, no. 1, pp. 258–262, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. G. A. Buxton and N. Clarke, “Drug diffusion from polymer core-shell nanoparticles,” Soft Matter, vol. 3, no. 12, pp. 1513–1517, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Jang and Y. Kim, “Fabrication of monodisperse silica-polymer core-shell nanoparticles with excellent antimicrobial efficacy,” Chemical Communications, no. 34, pp. 4016–4018, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. K. Hwang, U. Jeong , and E. C. Cho, “Production of uniform-sized polymer core-shell microcapsules by coaxial electrospraying,” Langmuir, vol. 24, no. 6, pp. 2446–2451, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Zou, S. Wu, and J. Shen, “Preparation of silica-coated poly(styrene-co-4-vinylpyridine) particles and hollow particles,” Langmuir, vol. 24, no. 18, pp. 10453–10461, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. A. R. Mahdavian, M. Ashjari, and H. S. Mobarakeh, “Nanocomposite particles with core-shell morphology—I. Preparation and characterization of Fe3O4-poly(butyl acrylate-styrene) particles via miniemulsion polymerization,” Journal of Applied Polymer Science, vol. 110, no. 2, pp. 1242–1249, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Y. Lee, S. P. Rwei, L. Wang, and P. H. Chen, “Preparation and characterization of core-shell polyaniline-polystyrene sulfonate@Fe3O4 nanoparticles,” Materials Chemistry and Physics, vol. 112, no. 3, pp. 805–809, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. X. Liu, H. Wu, F. Ren, G. Qiu, and M. Tang, “Controllable fabrication of SiO2/polypyrrole core-shell particles and polypyrrole hollow spheres,” Materials Chemistry and Physics, vol. 109, no. 1, pp. 5–9, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Sacanna and A. P. Philipse, “A generic single-step synthesis of monodisperse core/shell colloids based on spontaneous pickering emulsification,” Advanced Materials, vol. 19, no. 22, pp. 3824–3826, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Schmid, S. Fujii, S. P. Armes et al., “Polystyrene-silica colloidal nanocomposite particles prepared by alcoholic dispersion polymerization,” Chemistry of Materials, vol. 19, no. 10, pp. 2435–2445, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Duping, A. Schmidt, J. A. Balmer, and S. P. Armes, “Efficient synthesis of poly(2-vinylpyridine)-silica colloidal nanocomposite particles using a cationic azo initiator,” Langmuir, vol. 23, no. 23, pp. 11812–11818, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. P. Zhang, S. H. Lee, K. R. Reddy, A. I. Gopalan, and K. P. Lee, “Synthesis and characterization of core-shell SiO2 nanoparticles/poly(3-aminophenylboronic acid) composites,” Journal of Applied Polymer Science, vol. 104, no. 4, pp. 2743–2750, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. X. Ye, Y. Zhou, J. Chen, and Y. Sun, “Synthesis and infrared emissivity study of collagen-g-PMMA/Ag@TiO2 composite,” Materials Chemistry and Physics, vol. 106, no. 2-3, pp. 447–451, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Jang, J. Ha, and B. Lim, “Synthesis and characterization of monodisperse silica-polyaniline core-shell nanoparticles,” Chemical Communications, no. 15, pp. 1622–1624, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Qiu, Q. Wang, and M. Nie, “Polyaniline/Fe3O4 magnetic nanocomposite prepared by ultrasonic irradiation,” Journal of Applied Polymer Science, vol. 102, no. 3, pp. 2107–2111, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Liu, L. Zhang, and Z. Su, “Core/shell SiOx@PAM nanospheres from UV-assisted surface-initiated free radical polymerization,” Journal of Applied Polymer Science, vol. 100, no. 5, pp. 3433–3438, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Wang, J. Hu, H. Zhang, and T. Zhang, “Au-impregnated polyacrylonitrile (PAN)/polythiophene (PTH) core-shell nanofibers with high-performance semiconducting properties,” Chemical Communications, vol. 47, no. 24, pp. 6837–6839, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. W. Wu, T. Zhou, A. Berliner, P. Banerjee, and S. Zhou, “Smart core-shell hybrid nanogels with ag nanoparticle core for cancer cell imaging and gel shell for pH-regulated drug delivery,” Chemistry of Materials, vol. 22, no. 6, pp. 1966–1976, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Tian, J. Jin, F. Zheng, and H. Zhao, “Self-assembly of gold nanoparticles and polystyrene: a highly versatile approach to the preparation of colloidal particles with polystyrene cores and gold nanoparticle coronae,” Langmuir, vol. 26, no. 11, pp. 8762–8768, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. J. C. Boyer, M. P. Manseau, J. I. Murray, and F. C. J. M. Van Veggel, “Surface modification of upconverting NaYF4 nanoparticles with PEG-phosphate ligands for NIR (800 nm) biolabeling within the biological window,” Langmuir, vol. 26, no. 2, pp. 1157–1164, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. J. C. Meredith, J. H. Lee, M. A. Mahmoud, V. B. Sitterle, and J. J. Sitterle, “Highly scattering, surface-enhanced raman scattering-active, metal nanoparticle-coated polymers prepared via combined swelling—Heteroaggregation,” Chemistry of Materials, vol. 21, no. 23, pp. 5654–5663, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. A. S. Kumbhar and G. Chumanov, “Encapsulation of silver nanoparticles into polystyrene microspheres,” Chemistry of Materials, vol. 21, no. 13, pp. 2835–2839, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. W. Wu, T. Zhou, and S. Zhou, “Tunable photoluminescence of Ag nanocrystals in multiple-sensitive hybrid microgels,” Chemistry of Materials, vol. 21, pp. 2851–2861, 2009. View at Google Scholar
  45. S. Xing, L. H. Tan, M. Yang et al., “Highly controlled core/shell structures: tunable conductive polymer shells on gold nanoparticles and nanochains,” Journal of Materials Chemistry, vol. 19, no. 20, pp. 3286–3291, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Ohnuma, E. C. Cho, M. Jiangs, B. Ohtani, and Y. Xia, “Metal-polymer hybrid colloidal particles with an eccentric structure,” Langmuir, vol. 25, no. 24, pp. 13880–13887, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Xuan, Y. X. J. Wang, J. C. Yu, and K. C. F. Leung, “Preparation, characterization, and catalytic activity of core/shell Fe3O4@polyaniline@Au nanocomposites,” Langmuir, vol. 25, no. 19, pp. 11835–11843, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. S. R. Guo, J. Y. Gong, P. Jiang, M. Wu, Y. Lu, and S. H. Yu, “Biocompatible luminescent silver@phenol formaldehyde resin core/shell nanospheres: narge-ncale synthesis and application for in vivo bioimaging,” Advanced Functional Materials, vol. 18, pp. 872–879, 2008. View at Google Scholar
  49. B. Yin and M. Hakkarainen, “Core-shell nanoparticle-plasticizers for design of high-performance polymeric materials with improved stiffness and toughness,” Journal of Materials Chemistry, vol. 21, pp. 8670–8677, 2011. View at Google Scholar
  50. M. G. Han, J. Sperry, A. Gupta, C. F. Huebner, S. T. Ingram, and S. H. Foulger, “Polyaniline coated poly(butyl methacrylate) core-shell particles: roll-to-roll printing of templated electrically conductive structures,” Journal of Materials Chemistry, vol. 17, no. 14, pp. 1347–1352, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. J. L. Zhang, R. S. Srivastava, and R. D. K. Misra, “Core-shell magnetite nanoparticles surface encapsulated with smart stimuli-responsive polymer: synthesis, characterization, and LCST of viable drug-targeting delivery system,” Langmuir, vol. 23, no. 11, pp. 6342–6351, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. H. Zhang, X. Zhong, J. J. Xu, and H. Y. Chen, “Fe3O4/Polypyrrole/Au nanocomposites with core/shell/shell structure: synthesis, characterization, and their electrochemical properties,” Langmuir, vol. 24, no. 23, pp. 13748–13752, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. G. Gonalves, P. A. A. P. Marques, A. Barros-Timmons et al., “Graphene oxide modified with PMMA via ATRP as a reinforcement filler,” Journal of Materials Chemistry, vol. 20, no. 44, pp. 9927–9934, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. K. Y. Pu, K. Li, J. Shi, and B. Liu, “Fluorescent single-molecular core-shell nanospheres of hyperbranched conjugated polyelectrolyte for live-cell imaging,” Chemistry of Materials, vol. 21, no. 16, pp. 3816–3822, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. B. Yuan and D. A. Wicks, “Thermotropic color changing nanoparticles prepared by encapsulating blue polystyrene particles with a poly-N-isopropylacrylamide gel,” Journal of Applied Polymer Science, vol. 105, no. 2, pp. 446–452, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. D. Li, B. Dong, X. Bai, Y. Wang, and H. Song, “Influence of the TGA modification on upconversion luminescence of hexagonal-phase NaYF4:Yb3+, Er3+ nanoparticles,” Journal of Physical Chemistry C, vol. 114, no. 18, pp. 8219–8226, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. H. Chen, X. Wu, H. Duan et al., “Biocompatible polysiloxane-containing diblock copolymer PEO-b-PγMPS for coating magnetic nanoparticles,” ACS Applied Materials & Interfaces, vol. 1, no. 10, pp. 2134–2140, 2009. View at Google Scholar
  58. J. Han, Y. Liu, and R. Guo, “A simple one-step chemical route to gold/polymer core/shell composites and polymer hollow spheres,” Journal of Applied Polymer Science, vol. 112, no. 3, pp. 1244–1249, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. F. Wen, W. Zhang, G. Wei et al., “Synthesis of noble metal nanoparticles embedded in the shell layer of core-shell poly(styrene-co-4-vinylpyridine) micospheres and their application in catalysis,” Chemistry of Materials, vol. 20, no. 6, pp. 2144–2150, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. X. Jiang and J. Yin, “Photoinitiated synthesis of polymer brush from dendritic photoinitiator electrostatic self-assembly,” Chemical Communications, no. 39, pp. 4927–4928, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. A. W. Green, A. W. Timms, and P. N. Green, in Proceedings of Radtecheurope, p. 636, RadTechEurope, Fribourg, Switzerland, Edinburgh, Scotland, 1991.
  62. W. Stöber, A. Fink, and E. Bohn, “Synthesis of silica nanoparticles,” Journal of Colloid and Interface Science, vol. 26, pp. 62–66, 1968. View at Google Scholar
  63. L. Liu, B. Li, R. Qin, H. Zhao, X. Ren, and Z. Su, “Synthesis and characterization of new bifunctional nanocomposites possessing upconversion and oxygen-sensing properties,” Nanotechnology, vol. 21, no. 28, Article ID 285701, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. G. Chen, H. Liu, H. Liang, G. Somesfalean, and Z. Zhang, “Upconversion emission enhancement in Yb3+/Er3+-codoped Y2O3 nanocrystals by tridoping with Li+ ions,” Journal of Physical Chemistry C, vol. 112, no. 31, pp. 12030–12036, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. Z. Li, L. A. Fredin, P. Tewari et al., “In situ catalytic encapsulation of core-shell nanoparticles having variable shell thickness: dielectric and energy storage properties of high-permittivity metal oxide nanocomposites,” Chemistry of Materials, vol. 22, pp. 5154–5164, 2010. View at Google Scholar
  66. N. V. Long, T. D. Hien, T. Asaka, M. Ohtaki, and M. Nogami, “Synthesis and characterization of Pt-Pd alloy and core-shell bimetallic nanoparticles for direct methanol fuel cells (DMFCs): enhanced electrocatalytic properties of well-shaped core-shell morphologies and nanostructures,” International Journal of Hydrogen Energy, vol. 36, no. 14, pp. 8478–8491, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. A. Alonso, A. Macanás, A. Shafir et al., “Donnan-exclusion-driven distribution of catalytic ferromagnetic nanoparticles synthesized in polymeric fibers,” Dalton Transactions, vol. 39, pp. 2579–2586, 2010. View at Google Scholar
  68. S. Wei, Q. Wang, J. Zhu et al., “Multifunctional composite core-shell nanoparticles,” Nanoscale, vol. 3, pp. 4474–4502, 2011. View at Publisher · View at Google Scholar
  69. J. Zhu, S. Wei, N. Haldolaarachchige, D. P. Young, and Z. Gou, “Electromagnetic field shielding polyurethane nanocomposites reinforced with core-shell Fe-Silica nanoparticles,” The Journal of Physical Chemistry C, vol. 115, pp. 15304–15310, 2011. View at Publisher · View at Google Scholar
  70. J. Zhu, S. Wei, I. Y. Lee et al., “Silica stabilized iron particles toward anti-corrosion magnetic polyurethane nanocomposites,” RSC Advances, vol. 2, pp. 1136–1143, 2012. View at Publisher · View at Google Scholar
  71. J. Zhu, S. Wei, H. Gu et al., “One-pot synthesis of magnetic graphene nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal,” Environmental Science and Technology, vol. 46, pp. 977–985, 2012. View at Publisher · View at Google Scholar
  72. H. Gu, Y. Huang, X. Zhang et al., “Magnetoresistive polyaniline-magnetite nanocomposites with negative dielectrical properties,” Polymer, vol. 53, pp. 801–809, 2012. View at Publisher · View at Google Scholar
  73. Z. Guo, C. S. S. R. Kumar, L. L. Henry et al., “Displacement synthesis of Cu shells surrounding Co nanoparticles,” Journal of Electrochemical Society, vol. 1, pp. D1–D5, 2005. View at Publisher · View at Google Scholar
  74. Z. Guo, L. L. Henry, and E. J. Podlaha, “An examination of Co and Fe core nanoparticles with a protecting shell,” ECS Transactions, vol. 1, pp. 63–69, 2006. View at Google Scholar
  75. Z. Guo, L. L. Henry, and E. J. Podlaha, “CoFe, Fe and Co nanoparticle displacement with Cu ions,” ECS Transactions, vol. 3, pp. 337–345, 2007. View at Publisher · View at Google Scholar
  76. B. Guo, W. A. Finne, and A. C. Albertsson, “Simple route to size-tunable degradable and electroactive nanoparticles from the self-assembly of conducting coil rod coiltriblock copolymers,” Chemistry of Materials, vol. 23, pp. 4045–4055, 2011. View at Google Scholar
  77. X. Yang, L. Chen, B. Huang, F. Bai, and X. Yang, “Synthesis of pH-sensitive hollow polymer microspheres and their application as drug carriers,” Polymer, vol. 50, no. 15, pp. 3556–3563, 2009. View at Publisher · View at Google Scholar · View at Scopus
  78. G. A. Buxton and C. Nigel, “Drug diffusion from polymer core-shell nanoparticles,” Soft Matter, vol. 3, pp. 1513–1517, 2007. View at Google Scholar
  79. D. Lina, J. Yiguang, Y. Jiangyong et al., “A functionalized poly(amidoamine) nanocarrier-loading 5-fluorouracil: pH-responsive drug release and enhanced anticancer effect,” Anti-Cancer Drugs, vol. 24, pp. 172–180, 2013. View at Google Scholar
  80. K. R. Reddy, K. P. Lee, J. Y. Kim, and Y. Lee, “Self-assembly and graft polymerization route to monodispersed Fe3O4@SiO2-polyaniline core-shell composite nanoparticles: physical properties,” Journal of Nanoscience and Nanotechnology, vol. 8, no. 11, pp. 5632–5639, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. C. Sun, J. S. H. Lee, and M. Zhang, “Magnetic nanoparticles in MR imaging and drug delivery,” Advanced Drug Delivery Reviews, vol. 60, pp. 1252–1265, 2008. View at Google Scholar
  82. N. Nishiyama and K. Kataoka, “Nanostructured devices based on block copolymer assemblies for drug delivery: designing structures for enhanced drug function,” Advances in Polymer Science, vol. 193, no. 1, pp. 67–101, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. J. Wu and A. Eisenberg, “Proton diffusion across membranes of vesicles of poly(styrene-b-acrylic acid) diblock copolymers,” Journal of the American Chemical Society, vol. 128, no. 9, pp. 2880–2884, 2006. View at Publisher · View at Google Scholar · View at Scopus
  84. D. A. Tomalia, “Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry,” Progress in Polymer Science, vol. 30, no. 3-4, pp. 294–324, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. O. C. Farokhzad, J. Cheng, B. A. Teply et al., “Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 16, pp. 6315–6320, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. V. Yathindranath, T. Hegmann, J. Van Lierop, K. Potter, C. B. Fowler, and D. F. Moore, “Simultaneous magnetically directed drug convection and MR imaging,” Nanotechnology, vol. 20, no. 40, Article ID 405101, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. F. Yu, L. Zhang, Y. Huang, K. Sun, A. E. David, and V. C. Yang, “The magnetophoretic mobility and superparamagnetism of core-shell iron oxide nanoparticles with dual targeting and imaging functionality,” Biomaterials, vol. 31, no. 22, pp. 5842–5848, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Wang, C. C. Mi, W. X. Wang et al., “Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb,Er upconversion nanoparticles,” ACS Nano, vol. 3, no. 6, pp. 1580–1586, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. Y. Lu, S. Proch, M. Schrinner, M. Drechsler, R. Kempe, and M. Ballauff, “Thermosensitive core-shell microgel as a “nanoreactor” for catalytic active metal nanoparticles,” Journal of Materials Chemistry, vol. 19, pp. 3955–3961, 2009. View at Google Scholar
  90. T. Chen, P. Xu, Y. Luo et al., “Preparation of poly(butyl acrylate)-poly(methyl methacrylate) (core-shell)/phosphor composite particles and its application in PVC matrix,” Journal of Applied Polymer Science, vol. 114, no. 1, pp. 496–502, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. H. Takahashi, T. Niidome, T. Kawano, S. Yamada, and Y. Niidome, “Surface modification of gold nanorods using layer-by-layer technique for cellular uptake,” Journal of Nanoparticle Research, vol. 10, no. 1, pp. 221–228, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. Z. Liao, H. Wang, R. Lv et al., “Polymeric liposomes-coated superparamagnetic iron oxide nanoparticles as contrast agent for targeted magnetic resonance imaging of cancer cells,” Langmuir, vol. 27, no. 6, pp. 3100–3105, 2011. View at Publisher · View at Google Scholar · View at Scopus
  93. M. Gonzales-Weimuller, M. Zeisberger, and K. M. Krishnan, “Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia,” Journal of Magnetism and Magnetic Materials, vol. 321, no. 13, pp. 1947–1950, 2009. View at Publisher · View at Google Scholar · View at Scopus