Table of Contents
Journal of Nanoparticles
Volume 2013 (2013), Article ID 690407, 4 pages
Research Article

Conductometry and Size Characterization of Polypyrrole Nanoparticles Produced by Ball Milling

1Technical University of Liberec, Faculty of textile engineering, Studentska 2, 46117 Liberec, Czech Republic
2BUITEMS, Department of textile engineering, 87100 Quetta, Pakistan

Received 14 January 2013; Revised 28 March 2013; Accepted 28 March 2013

Academic Editor: Xiangwu Zhang

Copyright © 2013 Abdul Malik Rehan Abbasi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Polypyrrole (PPy), one of the most extensively investigated conducting polymers, has attracted a great deal of interest because of its good electrical conductivity, environmental stability, and easy synthesis. PPy films were produced by polymerization of pyrrole and tosylate (TsO) as dopants in the presence of oxidant FeCl3 and polyethylene glycol ( 8000) at −5°C for 48 h. High energy milling was carried out at 850 rpm in the dry media with the balls of 10 mm. Particles were then characterized by Scanning Electron Microscope and Dynamic Light Scattering techniques for size distribution, and it was found that the size of PPy particles is a decreasing function of time of milling. Electrical conductivity was measured by preparing a homogenous aqueous dispersion of PPy particles and found as exponential decreasing function of time of milling. The changes occurred in PPy after milling was analyzed by Differential Scanning Calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR).