Table of Contents
Journal of Nanoparticles
Volume 2013, Article ID 690407, 4 pages
http://dx.doi.org/10.1155/2013/690407
Research Article

Conductometry and Size Characterization of Polypyrrole Nanoparticles Produced by Ball Milling

1Technical University of Liberec, Faculty of textile engineering, Studentska 2, 46117 Liberec, Czech Republic
2BUITEMS, Department of textile engineering, 87100 Quetta, Pakistan

Received 14 January 2013; Revised 28 March 2013; Accepted 28 March 2013

Academic Editor: Xiangwu Zhang

Copyright © 2013 Abdul Malik Rehan Abbasi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Tourillon and F. Garnier, “New electrochemically generated organic conducting polymers,” Journal of Electroanalytical Chemistry, vol. 135, no. 1, pp. 173–178, 1982. View at Google Scholar · View at Scopus
  2. C. W. Lin, B. J. Hwang, and C. R. Lee, “Sensing behaviors of the electrochemically co-deposited polypyrrole-poly(vinyl alcohol) thin film exposed to ammonia gas,” Materials Chemistry and Physics, vol. 58, no. 2, pp. 114–120, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. H. P. De Oliveira, C. A. S. Andrade, and C. P. De Melo, “Optical and dielectric properties of polypyrrole nanoparticles in a polyvinylalcohol matrix,” Synthetic Metals, vol. 155, no. 3, pp. 631–634, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Wang and X. Jing, “Intrinsically conducting polymers for electromagnetic interference shielding,” Polymers for Advanced Technologies, vol. 16, no. 4, pp. 344–351, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. A. M. R. Abbasi, M. Mushtaq Mangat, V. K. Baheti, and J. Militky, “Electrical and thermal properties of polypyrrole coated cotton fabric,” Vlakna a Textil, vol. 19, pp. 48–52, 2012. View at Google Scholar
  6. J. Jang, “Conducting polymer nanomaterias and their applications,” Emissive Materials Nanomaterials, vol. 199, pp. 189–260, 2006. View at Publisher · View at Google Scholar
  7. K. Suri, S. Annapoorni, R. P. Tandon, C. Rath, and V. K. Aggrawal, “Thermal transition behaviour of iron oxide-polypyrrole nanocomposites,” Current Applied Physics, vol. 3, no. 2-3, pp. 209–213, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. B. M. Mandal, P. Banerjee, and S. N. Bhattacharyya, “Polypyrrole (processable dispersions),” in Polymeric Materials Encyclopedia, J. C. Salamone, Ed., pp. 6670–6678, CRC Press, Boca Raton, Fla, USA, 1996. View at Google Scholar
  9. S. P. Armes, M. Aldissi, G. C. Idzorek et al., “Particle size distributions of polypyrrole colloids,” Journal of Colloid And Interface Science, vol. 141, no. 1, pp. 119–126, 1991. View at Google Scholar · View at Scopus
  10. F. Li, M. A. Winnik, A. Matvienko, and A. Mandelis, “Polypyrrole nanoparticles as a thermal transducer of NIR radiation in hot-melt adhesives,” Journal of Materials Chemistry, vol. 17, no. 40, pp. 4309–4315, 2007. View at Publisher · View at Google Scholar · View at Scopus