Table of Contents
Journal of Nanoparticles
Volume 2013, Article ID 901401, 5 pages
http://dx.doi.org/10.1155/2013/901401
Research Article

Coimmobilization of Naringinases on Silk Fibroin Nanoparticles and Its Application in Food Packaging

The State Engineering Laboratory of Modern Silk and Silk Biotechnology Key Laboratory, Medical College of Soochow University, No. 199, 702-2303 Room, Renai Road, Suzhou 215123, China

Received 8 November 2012; Accepted 30 December 2012

Academic Editor: Vijaya Rangari

Copyright © 2013 Min-Hui Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Puri and U. C. Banerjee, “Production, purification, and characterization of the debittering enzyme naringinase,” Biotechnology Advances, vol. 18, no. 3, pp. 207–217, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Manjón, J. Bastida, C. Romero, A. Jimeno, and J. L. Iborra, “Immobilization of naringinase on glycophase-coated porous glass,” Biotechnology Letters, vol. 7, no. 7, pp. 477–482, 1985. View at Google Scholar · View at Scopus
  3. H. Y. Tsen, S. Y. Tsai, and G. K. Yu, “Fiber entrapment of naringinase from Penicillium sp. and application to fruit juice debittering,” Journal of Fermentation and Bioengineering, vol. 67, no. 3, pp. 186–189, 1989. View at Google Scholar · View at Scopus
  4. N. F. F. Soares and J. H. Hotchkiss, “Naringinase immobilization in packaging films for reducing naringin concentration in grapefruit juice,” Journal of Food Science, vol. 63, no. 1, pp. 61–65, 1998. View at Google Scholar
  5. M. A. Del Nobile, L. Piergiovanni, G. G. Buonocore, P. Fava, M. L. Puglisi, and L. Nicolais, “Naringinase immobilization in polymeric films intended for food packaging applications,” Journal of Food Science, vol. 68, no. 6, pp. 2046–2049, 2003. View at Google Scholar · View at Scopus
  6. G. Şekeroğlu, S. Fadıloğlu, and F. Göğüş, “Immobilization and characterization of naringinase for the hydrolysis of naringin,” European Food Research and Technology, vol. 224, pp. 55–60, 2006. View at Google Scholar
  7. M. Puri, H. Kaur, and J. F. Kennedy, “Covalent immobilization of naringinase for the transformation of a flavonoid,” Journal of Chemical Technology and Biotechnology, vol. 80, no. 10, pp. 1160–1165, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. S. J. Lei, Y. X. Xu, G. Fan, M. Xiao, and S. Y. Pan, “Immobilization of naringinase on mesoporous molecular sieve MCM-41 and its application to debittering of white grapefruit,” Applied Surface Science, vol. 257, no. 9, pp. 4096–4099, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Q. Zhang, “Natural silk fibroin as a support for enzyme immobilization,” Biotechnology Advances, vol. 16, no. 5-6, pp. 961–971, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Q. Zhang, W. D. Shen, R. A. Gu, J. Zhu, and R. Y. Xue, “Amperometric biosensor for uric acid based on uricase-immobilized silk fibroin membrane,” Analytica Chimica Acta, vol. 369, no. 1-2, pp. 123–128, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Q. Zhang, J. Zhu, and R. A. Gu, “Improved biosensor for glucose based on glucose oxidase-immobilized silk fibroin membrane,” Applied Biochemistry and Biotechnology A, vol. 75, no. 2-3, pp. 215–233, 1998. View at Google Scholar · View at Scopus
  12. S. Miyairi and M. Sugiura, “Properties of β-glucosidase immobilized in sericin membrane,” Journal of Fermentation Technology, vol. 56, no. 4, pp. 303–308, 1978. View at Google Scholar
  13. Z.-Z. Zhang, Y.-B. Li, E.-Z. Su, and P. Li, “Immobilization of β-glucosidase on silk fibroin membrane,” Food and Fermentation Industries, vol. 30, no. 6, pp. 6–9, 2004. View at Google Scholar
  14. Y. Q. Zhang, M. L. Tao, W. D. Shen et al., “Immobilization of L-asparaginase on the microparticles of the natural silk sericin protein and its characters,” Biomaterials, vol. 25, no. 17, pp. 3751–3759, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Q. Zhang, W. L. Zhou, W. D. Shen et al., “Synthesis, characterization and immunogenicity of silk fibroin-L- asparaginase bioconjugates,” Journal of Biotechnology, vol. 120, no. 3, pp. 315–326, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Q. Zhang, Y. Ma, Y. Y. Xia, W. D. Shen, J. P. Mao, and R. Y. Xue, “Silk sericin-insulin bioconjugates: synthesis, characterization and biological activity,” Journal of Controlled Release, vol. 115, no. 3, pp. 307–315, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Q. Zhang, Y. Ma, Y. Y. Xia et al., “Synthesis of silk fibroin-insulin bioconjugates and their characterization and activities in vivo,” Journal of Biomedical Materials Research B, vol. 79, no. 2, pp. 275–283, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. Y. Q. Zhang, W. D. Shen, R. L. Xiang, L. J. Zhuge, W. J. Gao, and W. B. Wang, “Formation of silk fibroin nanoparticles in water-miscible organic solvent and their characterization,” Journal of Nanoparticle Research, vol. 9, no. 5, pp. 885–900, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. H. B. Yan, Y. Q. Zhang, Y. L. Ma, and L. X. Zhou, “Biosynthesis of insulin-silk fibroin nanoparticles conjugates and in vitro evaluation of a drug delivery system,” Journal of Nanoparticle Research, vol. 11, no. 8, pp. 1937–1946, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Q. Zhang, R. L. Xiang, H. B. Yan, and X. X. Chen, “Preparation of silk fibroin nanoparticles and their application to immobilization of L-asparaginase,” Chemical Journal of Chinese Universities, vol. 29, no. 3, pp. 628–633, 2008. View at Google Scholar · View at Scopus
  21. Z. Z. Zhou and Y. Q. Zhang, “Biosynthesis of β-glucosidase-silk fibroin nanoparticles conjugates and enzymatic characteristics,” Advanced Materials Research, vol. 175-176, pp. 186–191, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. Y.-Q. Zhang, “A method of producing nanosize fibroin particle,” PCT, WO 2005085327 A1, 2005.