Table of Contents
Journal of Nanoparticles
Volume 2013 (2013), Article ID 953153, 6 pages
http://dx.doi.org/10.1155/2013/953153
Review Article

Charge Transfer in Nanocrystalline Semiconductor Electrodes

General Chemistry Laboratory, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou, Zografos Campus, 15780 Athens, Greece

Received 25 January 2013; Accepted 9 May 2013

Academic Editor: Gunjan Agarwal

Copyright © 2013 M. Bouroushian. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Levy, “Photochemistry of nanostructured materials for energy applications,” Journal of Electroceramics, vol. 1, no. 3, pp. 239–272, 1997. View at Google Scholar
  2. M. Bouroushian, Electrochemistry of Metal Chalcogenides, Springer, Berlin, Germany, 2010.
  3. S. E. Lindquist, A. Hagfeldt, S. Sodergren, and H. Lindstrom, “Charge transport in nanostructured thin-film electrodes,” in Electrochemistry of Nanostructures, G. Hodes, Ed., pp. 169–200, Wiley-VCH, Weinheim, Germany, 2001. View at Google Scholar
  4. D. Cahen, M. Grätzel, J. F. Guillemoles, and G. Hodes, “Dye-sensitized solar cells: principles of operation,” in Electrochemistry of Nanostructures, G. Hodes, Ed., pp. 201–228, Wiley-VCH, Weinheim, Germany, 2001. View at Google Scholar
  5. M. Grätzel, “Photovoltaic and photoelectrochemical conversion of solar energy,” Philosophical Transactions of the Royal Society A, vol. 365, no. 1853, pp. 993–1005, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Rajeshwar, “Fundamentals of semiconductor electrochemistry and photoelectrochemistry,” in Encyclopedia of Electrochemistry, A. J. Bard, M. Stratmann, and S. Licht, Eds., vol. 6, pp. 1–53, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2007. View at Publisher · View at Google Scholar
  7. F. El Guibaly and K. Colbow, “Theory of photocurrent in semiconductor-electrolyte junction solar cells,” Journal of Applied Physics, vol. 53, no. 3, pp. 1737–1740, 1982. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Chandra, S. L. Singh, and N. Khare, “A theoretical model of a photoelectrochemical solar cell,” Journal of Applied Physics, vol. 59, no. 5, pp. 1570–1577, 1986. View at Publisher · View at Google Scholar · View at Scopus
  9. S. E. Lindquist, B. Finnström, and L. Tegnér, “Photoelectrochemical properties of polycrystalline TiO2 thin film electrodes on quartz substrates,” Journal of the Electrochemical Society, vol. 130, no. 2, pp. 351–358, 1982. View at Google Scholar · View at Scopus
  10. J. J. Kelly and D. Vanmaekelbergh, “Charge carrier dynamics in nanoporous photoelectrodes,” Electrochimica Acta, vol. 43, no. 19-20, pp. 2773–2780, 1998. View at Google Scholar · View at Scopus
  11. G. Hodes, I. D. J. Howell, and L. M. Peter, “Nanocrystalline photoelectrochemical cells. A new concept in photovoltaic cells,” Journal of the Electrochemical Society, vol. 139, no. 11, pp. 3136–3140, 1992. View at Google Scholar · View at Scopus
  12. A. Hagfeld and M. Grätzel, “Light-induced redox reactions in nanocrystalline systems,” Chemical Reviews, vol. 95, no. 1, pp. 49–68, 1995. View at Google Scholar · View at Scopus
  13. S. Södergren, H. Siegbahn, H. Rensmo, H. Lindström, A. Hagfeldt, and S. E. Lindquist, “Lithium intercalation in nanoporous anatase TiO2 studied with XPS,” Journal of Physical Chemistry B, vol. 101, no. 16, pp. 3087–3090, 1997. View at Google Scholar · View at Scopus
  14. J. Bisquert, G. Garcia-Belmonte, and F. Fabregat-Santiago, “Modelling the electric potential distribution in the dark in nanoporous semiconductor electrodes,” Journal of Solid State Electrochemistry, vol. 3, no. 6, pp. 337–347, 1999. View at Google Scholar · View at Scopus
  15. L. M. Peter, E. A. Ponomarev, G. Franco, and N. J. Shaw, “Aspects of the photoelectrochemistry of nanocrystalline systems,” Electrochimica Acta, vol. 45, no. 4-5, pp. 549–560, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. L. M. Peter and K. G. U. Wijayantha, “Intensity dependence of the electron diffusion length in dye-sensitised nanocrystalline TiO2 photovoltaic cells,” Electrochemistry Communications, vol. 1, no. 12, pp. 576–580, 1999. View at Google Scholar · View at Scopus
  17. L. Peter, “Transport, trapping and interfacial transfer of electrons in dye-sensitized nanocrystalline solar cells,” Journal of Electroanalytical Chemistry, vol. 599, no. 2, pp. 233–240, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. N. Kopidakis, N. R. Neale, K. Zhu, J. van de Lagemaat, and A. J. Frank, “Spatial location of transport-limiting traps in TiO2 nanoparticle films in dye-sensitized solar cells,” Applied Physics Letters, vol. 87, no. 20, Article ID 202106, 3 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Zhang, X. Yang, Y. Numata, and L. Han, “Highly efficient dye-sensitized solar cells: progress and future challenges,” Energy & Environmental Science, vol. 6, pp. 1443–1464, 2013. View at Google Scholar
  20. A. Tiwari and M. Snure, “Synthesis and characterization of ZnO nano-plant-like electrodes,” Journal of Nanoscience and Nanotechnology, vol. 8, no. 8, pp. 3981–3987, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, “Dye-sensitized solar cells,” Chemical Reviews, vol. 110, no. 11, pp. 6595–6663, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Ueda, T. Hase, H. Yanagi et al., “Epitaxial growth of transparent p-type conducting CuGaO2 thin films on sapphire (001) substrates by pulsed laser deposition,” Journal of Applied Physics, vol. 89, no. 3, pp. 1790–1793, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Snure and A. Tiwari, “CuBO2: a p-type transparent oxide,” Applied Physics Letters, vol. 91, no. 9, Article ID 092123, 3 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. M. A. Green, “Photovoltaic principles,” Physica E, vol. 14, no. 1-2, pp. 11–17, 2002. View at Publisher · View at Google Scholar · View at Scopus