Table of Contents
Journal of Nanoparticles
Volume 2014, Article ID 285954, 6 pages
http://dx.doi.org/10.1155/2014/285954
Research Article

Synthesis of Platinum Nanoparticles from K2PtCl4 Solution Using Bacterial Cellulose Matrix

1Inorganic and Physical Chemistry Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
2Physical Chemistry Division, Faculty of Mathematics and Natural Sciences, Universitas Sam Ratulangi, Jalan Kampus UNSRAT Kleak, Manado 95115, Indonesia
3Organic Chemistry Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia

Received 9 May 2014; Revised 12 November 2014; Accepted 16 November 2014; Published 14 December 2014

Academic Editor: Vijaya Rangari

Copyright © 2014 H. F. Aritonang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D.-H. Lim, W.-D. Lee, and H.-I. Lee, “Highly dispersed and nano-sized Pt-based electrocatalysts for low-temperature fuel cells,” Catalysis Surveys from Asia, vol. 12, no. 4, pp. 310–325, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Takasu, N. Ohashi, X.-G. Zhang et al., “Size effects of platinum particles on the electroreduction of oxygen,” Electrochimica Acta, vol. 41, no. 16, pp. 2595–2600, 1996. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Bergamaski, A. L. N. Pinheiro, E. Teixeira-Neto, and F. C. Nart, “Nanoparticle size effects on methanol electrochemical oxidation on carbon supported platinum catalysts,” The Journal of Physical Chemistry B, vol. 110, no. 39, pp. 19271–19279, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. Z. He, J. Chen, D. Liu, H. Tang, W. Deng, and Y. Kuang, “Deposition and electrocatalytic properties of platinum nanoparticals on carbon nanotubes for methanol electrooxidation,” Materials Chemistry and Physics, vol. 85, no. 2-3, pp. 396–401, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. C. V. Rao and B. Viswanathan, “Monodispersed platinum nanoparticle supported carbon electrodes for hydrogen oxidation and oxygen reduction in proton exchange membrane fuel cells,” Journal of Physical Chemistry C, vol. 114, no. 18, pp. 8661–8667, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. M. P. Pileni, “Nanosized particles made in colloidal assemblies,” Langmuir, vol. 13, no. 13, pp. 3266–3276, 1997. View at Publisher · View at Google Scholar · View at Scopus
  7. S.-H. Wu and D.-H. Chen, “Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol,” Journal of Colloid and Interface Science, vol. 259, no. 2, pp. 282–286, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. B. R. Evans, H. M. O'Neill, V. P. Malyvanh, I. Lee, and J. Woodward, “Palladium-bacterial cellulose membranes for fuel cells,” Biosensors and Bioelectronics, vol. 18, no. 7, pp. 917–923, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Sanchez-Dominguez, M. Boutonnet, and C. Solans, “A novel approach to metal and metal oxide nanoparticle synthesis: the oil-in-water microemulsion reaction method,” Journal of Nanoparticle Research, vol. 11, no. 7, pp. 1823–1829, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. H. B. Suffredini, G. R. Salazar-Banda, and L. A. Avaca, “Carbon supported electrocatalysts prepared by the sol-gel method and their utilization for the oxidation of methanol in acid media,” Journal of Sol-Gel Science and Technology, vol. 49, no. 2, pp. 131–136, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. C. A. Angelucci, M. D'Villa Silva, and F. C. Nart, “Preparation of platinum-ruthenium alloys supported on carbon by a sonochemical method,” Electrochimica Acta, vol. 52, no. 25, pp. 7293–7299, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. J. M. Sieben, M. M. E. Duarte, and C. E. Mayer, “Supported Pt and Pt-Ru catalysts prepared by potentiostatic electrodeposition for methanol electrooxidation,” Journal of Applied Electrochemistry, vol. 38, no. 4, pp. 483–490, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. Z. Zhou, S. Wang, W. Zhou et al., “Preparation of highly active Pt/C cathode electrocatalysts for DMFCs by an improved aqueous impregnation method,” Physical Chemistry Chemical Physics, vol. 5, no. 24, pp. 5485–5488, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Şen and G. Gökağaç, “Different sized platinum nanoparticles supported on carbon: an XPS study on these methanol oxidation catalysts,” The Journal of Physical Chemistry C, vol. 111, no. 15, pp. 5715–5720, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Maiyalagan, T. O. Alaje, and K. Scott, “Highly stable Pt-Ru nanoparticles supported on three-dimensional cubic ordered mesoporous carbon (Pt-Ru/CMK-8) as promising electrocatalysts for methanol oxidation,” The Journal of Physical Chemistry C, vol. 116, no. 3, pp. 2630–2638, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Wu, S. Liao, K. Wang, M. Chen, and V. Birss, “High pressure organic colloid method for the preparation of high performance carbon nanotube-supported Pt and PtRu catalysts for fuel cell applications,” Science in China Series E: Technological Sciences, vol. 53, no. 1, pp. 264–271, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Yang, D. Sun, J. Li et al., “In situ deposition of platinum nanoparticles on bacterial cellulose membranes and evaluation of PEM fuel cell performance,” Electrochimica Acta, vol. 54, no. 26, pp. 6300–6305, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Radiman and G. Yuliani, “Coconut water as a potential resource for cellulose acetate membrane preparation,” Polymer International, vol. 57, no. 3, pp. 502–508, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Monshi, M. R. Foroughi, and M. R. Monshi, “Modified scherrer equation to estimate more accurately nano-crystallite size using XRD,” World Journal of Nano Science and Engineering, vol. 2, pp. 154–160, 2012. View at Google Scholar
  20. K.-C. Cheng, J. M. Catchmark, and A. Demirci, “Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property,” Cellulose, vol. 16, no. 6, pp. 1033–1045, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Retegi, N. Gabilondo, C. Peña et al., “Bacterial cellulose films with controlled microstructure-mechanical property relationships,” Cellulose, vol. 17, no. 3, pp. 661–669, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. C. I. Sanders and D. S. Martin Jr., “Acid hydrolysis of [PtCl4]- and [PtCl3(H2O)]−1,” Journal of the American Chemical Society, vol. 83, no. 4, pp. 807–810, 1961. View at Publisher · View at Google Scholar · View at Scopus
  23. F. A. Cotton, G. Wilkinson, C. A. Murillo, and M. Bochmann, Advanced Inorganic Chemistry, John Wiley & Sons, New York, NY, USA, 6th edition, 1999.