Table of Contents
Journal of Nanoparticles
Volume 2014, Article ID 302429, 14 pages
http://dx.doi.org/10.1155/2014/302429
Review Article

Green Chemistry Based Benign Routes for Nanoparticle Synthesis

1Centre for Nano Sciences, Central University of Gujarat, Gandhinagar, India
2Department of Pharmaceutics, Hindu College of Pharmacy, Sonepat, Haryana, India
3School of Chemical Sciences, Central University of Gujarat, Gandhinagar, India
4Department of Biotechnology, Maharishi Markandeshwar University, Mullana, Ambala, Haryana, India

Received 13 December 2013; Accepted 27 January 2014; Published 24 March 2014

Academic Editor: Gunjan Agarwal

Copyright © 2014 Parth Malik et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Jain, A. Bhargava, S. Majumdar, J. C. Tarafdar, and J. Panwar, “Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective,” Nanoscale, vol. 3, no. 2, pp. 635–641, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. K. S. Suslick, Ed., Ultrasound: Its Chemical, Physical and Biological Effects, Wiley-VCH, Weinheim, Germany, 1988.
  3. T. Klaus, R. Joerger, E. Olsson, and C. Granqvist, “Silver-based crystalline nanoparticles, microbially fabricated,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 24, pp. 13611–13614, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. A. K. Jha, K. Prasad, and A. R. Kulkarni, “Synthesis of TiO2 nanoparticles using microorganisms,” Colloids and Surfaces B, vol. 71, no. 2, pp. 226–229, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Bharde, A. Wani, Y. Shouche, P. A. Joy, B. L. V. Prasad, and M. Sastry, “Bacterial aerobic synthesis of nanocrystalline magnetite,” Journal of the American Chemical Society, vol. 127, no. 26, pp. 9326–9327, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. M. I. Husseiny, M. A. El-Aziz, Y. Badr, and M. A. Mahmoud, “Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa,” Spectrochimica Acta A, vol. 67, no. 3-4, pp. 1003–1006, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Y. Sweeney, C. Mao, X. Gao et al., “Bacterial biosynthesis of cadmium sulfide nanocrystals,” Chemistry and Biology, vol. 11, no. 11, pp. 1553–1559, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. S. He, Z. Guo, Y. Zhang, S. Zhang, J. Wang, and N. Gu, “Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata,” Materials Letters, vol. 61, no. 18, pp. 3984–3987, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Mukherjee, A. Ahmad, D. Mandal et al., “Bioreduction of AuCl4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed,” Angewandte Chemie International Edition, vol. 40, no. 19, pp. 3585–3588, 2001. View at Publisher · View at Google Scholar
  10. N. Vigneshwaran, N. M. Ashtaputre, P. V. Varadarajan, R. P. Nachane, K. M. Paralikar, and R. H. Balasubramanya, “Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus,” Materials Letters, vol. 61, no. 6, pp. 1413–1418, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Ahmad, S. Senapati, M. I. Khan, R. Kumar, and M. Sastry, “Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp.,” Journal of Biomedical Nanotechnology, vol. 1, no. 1, pp. 47–53, 2005. View at Publisher · View at Google Scholar
  12. P. Mukherjee, A. Ahmad, D. Mandal et al., “Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis,” Nano Letters, vol. 1, no. 10, pp. 515–519, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Mukherjee, S. Senapati, D. Mandal et al., “Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum,” ChemBioChem, vol. 3, no. 5, pp. 461–463, 2002. View at Publisher · View at Google Scholar
  14. S. S. Shankar, A. Ahmad, R. Pasricha, and M. Sastry, “Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes,” Journal of Materials Chemistry, vol. 13, no. 7, pp. 1822–1826, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. A. K. Gade, P. Bonde, A. P. Ingle, P. D. Marcato, N. Durán, and M. K. Rai, “Exploitation of Aspergillus niger for synthesis of silver nanoparticles,” Journal of Biobased Materials and Bioenergy, vol. 2, no. 3, pp. 243–247, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Philip, “Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract,” Spectrochimica Acta A, vol. 73, no. 2, pp. 374–381, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Kathiresan, S. Manivannan, M. A. Nabeel, and B. Dhivya, “Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment,” Colloids and Surfaces B, vol. 71, no. 1, pp. 133–137, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. S. A. Kumar, A. A. Ansary, A. Abroad, and M. I. Khan, “Extracellular biosynthesis of CdSe quantum dots by the fungus, Fusarium oxysporum,” Journal of Biomedical Nanotechnology, vol. 3, no. 2, pp. 190–194, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Bharde, D. Rautaray, V. Bansal et al., “Extracellular biosynthesis of magnetite using fungi,” Small, vol. 2, no. 1, pp. 135–141, 2006. View at Publisher · View at Google Scholar
  20. V. Bansal, D. Rautaray, A. Ahmad, and M. Sastry, “Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum,” Journal of Materials Chemistry, vol. 14, no. 22, pp. 3303–3305, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. V. Bansal, D. Rautaray, A. Bharde et al., “Fungus-mediated biosynthesis of silica and titania particles,” Journal of Materials Chemistry, vol. 15, no. 26, pp. 2583–2589, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. W. Shenton, T. Douglas, M. Young, G. Stubbs, and S. Mann, “Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus,” Advanced Materials, vol. 11, no. 3, pp. 253–256, 1999. View at Google Scholar · View at Scopus
  23. S. W. Lee, C. Mao, C. E. Flynn, and A. M. Belcher, “Ordering of quantum dots, using genetically engineered viruses,” Science, vol. 296, no. 5569, pp. 892–895, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Mao, C. E. Flynn, A. Hayhurst et al., “Viral assembly of oriented quantum dot nanowires,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 12, pp. 6946–6951, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. C. T. Dameron, R. N. Reese, R. K. Mehra et al., “Biosynthesis of cadmium sulphide quantum semiconductor crystallites,” Nature, vol. 338, no. 6216, pp. 596–597, 1989. View at Google Scholar · View at Scopus
  26. M. Kowshik, W. Vogel, J. Urban, S. K. Kulkarni, and K. M. Paknikar, “Microbial synthesis of semiconductor PbS nanocrystallites,” Advanced Materials, vol. 14, no. 11, pp. 815–818, 2002. View at Publisher · View at Google Scholar
  27. M. Kowshik, N. Deshmukh, W. Vogel, J. Urban, S. K. Kulkarni, and K. M. Paknikar, “Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode,” Biotechnology and Bioengineering, vol. 78, no. 5, pp. 583–588, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Kowshik, S. Ashtaputre, S. Kharrazi et al., “Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3,” Nanotechnology, vol. 14, no. 1, pp. 95–100, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. J. L. Gardea-Torresdey, E. Gomez, J. R. Peralta-Videa, J. G. Parsons, H. Troiani, and M. Jose-Yacaman, “Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles,” Langmuir, vol. 19, no. 4, pp. 1357–1361, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. S. S. Shankar, A. Rai, A. Ahmad, and M. Sastry, “Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth,” Journal of Colloid and Interface Science, vol. 275, no. 2, pp. 496–502, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Daisy and K. Saipriya, “Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus,” International Journal of Nanomedicine, vol. 7, pp. 1189–1202, 2012. View at Publisher · View at Google Scholar
  32. X. Yang, Q. Li, H. Wang et al., “Green synthesis of palladium nanoparticles using broth of Cinnamomum camphora leaf,” Journal of Nanoparticle Research, vol. 12, no. 5, pp. 1589–1598, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Joglekar, K. Kodam, M. Dhaygude, and M. Hudlikar, “Novel route for rapid biosynthesis of lead nanoparticles using aqueous extract of Jatropha curcas L. latex,” Materials Letters, vol. 65, no. 19-20, pp. 3170–3172, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. H. J. Lee, G. Lee, N. R. Jang et al., “Biological synthesis of copper nanoparticles using plant extract,” Nanotechnology, vol. 1, pp. 371–374, 2011. View at Google Scholar
  35. T. Santhoshkumar, A. A. Rahuman, G. Rajakumar et al., “Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors,” Parasitology Research, vol. 108, no. 3, pp. 693–702, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. A. K. Mittal, A. Kaler, and U. C. Banerjee, “Free radical scavenging and antioxidant activity of silver nanoparticles synthesized from flower extract of Rhododendron dauricum,” Nano Biomedicine and Engineering, vol. 4, no. 3, pp. 118–124, 2012. View at Google Scholar
  37. A. K. Mittal, Y. Chisti, and U. C. Banerjee, “Synthesis of metallic nanoparticles using plant extracts,” Biotechnology Advances, vol. 31, no. 2, pp. 346–356, 2013. View at Publisher · View at Google Scholar
  38. Q. L. Feng, J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim, and J. O. Kim, “A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus,” Journal of Biomedical Materials Research, vol. 52, no. 4, pp. 662–668, 2000. View at Publisher · View at Google Scholar
  39. J. R. Morones, J. L. Elechiguerra, A. Camacho et al., “The bactericidal effect of silver nanoparticles,” Nanotechnology, vol. 16, no. 10, pp. 2346–2353, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Shivaji, S. Madhu, and S. Singh, “Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria,” Process Biochemistry, vol. 46, no. 9, pp. 1800–1807, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. M. F. Lengke, M. E. Fleet, and G. Southam, “Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver(I) nitrate complex,” Langmuir, vol. 23, no. 5, pp. 2694–2699, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. N. Durán, P. D. Marcato, O. L. Alves, G. I. H. de Souza, and E. Esposito, “Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains,” Journal of Nanobiotechnology, vol. 3, article 8, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. N. Vigneshwaran, N. M. Ashtaputre, P. V. Varadarajan, R. P. Nachane, K. M. Paralikar, and R. H. Balasubramanya, “Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus,” Materials Letters, vol. 61, no. 6, pp. 1413–1418, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Y. Parikh, S. Singh, B. L. V. Prasad, M. S. Patole, M. Sastry, and Y. S. Schouche, “Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp.: towards understanding biochemical synthesis mechanism,” ChemBioChem, vol. 9, no. 9, pp. 1415–1422, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Mann, “Bacteria and the midas touch,” Nature, vol. 357, no. 6377, pp. 358–360, 1992. View at Google Scholar · View at Scopus
  46. T. J. Beveridge and R. G. E. Murray, “Sites of metal deposition in the cell wall of Bacillus subtilis,” Journal of Bacteriology, vol. 141, no. 2, pp. 876–887, 1980. View at Google Scholar · View at Scopus
  47. L. Du, H. Jiang, X. Liu, and E. Wang, “Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin,” Electrochemistry Communications, vol. 9, no. 5, pp. 1165–1170, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. Park, Y. N. Hong, A. Weyers, Y. S. Kim, and R. J. Linhardt, “Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles,” IET Nanobiotechnology, vol. 5, no. 3, pp. 69–78, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. D. MubarakAli, N. Thajuddin, K. Jeganathan, and M. Gunasekaran, “Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens,” Colloids and Surfaces B, vol. 85, no. 2, pp. 360–365, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. B. Ankamwar, “Biosynthesis of gold nanoparticles (green-gold) using leaf extract of Terminalia catappa,” E-Journal of Chemistry, vol. 7, no. 4, pp. 1334–1339, 2010. View at Google Scholar · View at Scopus
  51. S. A. Babu and H. G. Prabu, “Synthesis of AgNPs using the extract of Calotropis procera flower at room temperature,” Materials Letters, vol. 65, no. 11, pp. 1675–1677, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. J. Banerjee and R. T. Narendhirakannan, “Biosynthesis of silver nanoparticles from Syzygium cumini (L.) seed extract and evaluation of their in vitro antioxidant activities,” Digest Journal of Nanomaterials and Biostructures, vol. 6, no. 3, pp. 961–968, 2011. View at Google Scholar · View at Scopus
  53. A. Bankar, B. Joshi, A. R. Kumar, and S. Zinjarde, “Banana peel extract mediated novel route for the synthesis of silver nanoparticles,” Colloids and Surfaces A, vol. 368, no. 1–3, pp. 58–63, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. H. Bar, D. K. Bhui, G. P. Sahoo, P. Sarkar, S. P. De, and A. Misra, “Green synthesis of silver nanoparticles using latex of Jatropha curcas,” Colloids and Surfaces A, vol. 339, no. 1–3, pp. 134–139, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. V. Baskaralingam, C. G. Sargunar, Y. C. Lin, and J. C. Chen, “Green synthesis of silver nanoparticles through Calotropis gigantea leaf extracts and evaluation of antibacterial activity against Vibrio alginolyticus,” Nanotechnology Development, vol. 2, no. 1, article e3, 2012. View at Publisher · View at Google Scholar
  56. L. Castro, M. L. Blázquez, J. A. Muñoz, F. González, C. García-Balboa, and A. Ballester, “Biosynthesis of gold nanowires using sugar beet pulp,” Process Biochemistry, vol. 46, no. 5, pp. 1076–1082, 2011. View at Publisher · View at Google Scholar
  57. S. P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, and M. Sastry, “Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract,” Biotechnology Progress, vol. 22, no. 2, pp. 577–583, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. S. P. Dubey, M. Lahtinen, and M. Sillanpää, “Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa,” Colloids and Surfaces A, vol. 364, no. 1–3, pp. 34–41, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Kaler, R. Nankar, M. S. Bhattacharyya, and U. C. Banerjee, “Extracellular biosynthesis of silver nanoparticles using aqueous extract of Candida viswanathii,” Journal of Bionanoscience, vol. 5, no. 1, pp. 53–58, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. J. Kesharwani, K. Y. Yoon, J. Hwang, and M. Rai, “Phytofabrication of silver nanoparticles by leaf extract of Datura metel: hypothetical mechanism involved in synthesis,” Journal of Bionanoscience, vol. 3, no. 1, pp. 39–44, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. A. T. Marshall, R. G. Haverkamp, C. E. Davies, J. G. Parsons, J. L. Gardea-Torresdey, and D. van Agterveld, “Accumulation of gold nanoparticles in Brassic juncea,” International Journal of Phytoremediation, vol. 9, no. 3, pp. 197–206, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Singh, D. Jain, M. K. Upadhyay, N. Khandelwal, and H. N. Verma, “Green synthesis of silver nanoparticles using Argemone mexicana leaf extract and evaluation of their antimicrobial activities,” Digest Journal of Nanomaterials and Biostructures, vol. 5, no. 2, pp. 483–489, 2010. View at Google Scholar · View at Scopus
  63. J. Y. Song, H. K. Jang, and B. S. Kim, “Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts,” Process Biochemistry, vol. 44, no. 10, pp. 1133–1138, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. V. Kumar and S. K. Yadav, “Plant-mediated synthesis of silver and gold nanoparticles and their applications,” Journal of Chemical Technology and Biotechnology, vol. 84, no. 2, pp. 151–157, 2009. View at Publisher · View at Google Scholar
  65. K. Mukunthan and S. Balaji, “Cashew apple juice (Anacardium occidentale L.) speeds up the synthesis of silver nanoparticles,” International Journal of Green Nanotechnology, vol. 4, no. 2, pp. 71–79, 2012. View at Publisher · View at Google Scholar
  66. X. Li, H. Xu, Z. S. Chen, and G. Chen, “Biosynthesis of nanoparticles by microorganisms and their applications,” Journal of Nanomaterials, vol. 2011, Article ID 270974, 16 pages, 2011. View at Publisher · View at Google Scholar
  67. M. Safaepour, A. R. Shahverdi, H. R. Shahverdi, M. R. Khorramizadeh, and G. A. Reza, “Green synthesis of small silver nanoparticles using geraniol and its cytotoxicity against Fibrosarcoma-Wehi 164,” Avicenna Journal of Medical Biotechnology, vol. 1, no. 2, pp. 111–115, 2009. View at Google Scholar
  68. S. Kaviya, J. Santhanalakshmi, and B. Viswanathan, “Biosynthesis of silver nano-flakes by Crossandra infundibuliformis leaf extract,” Materials Letters, vol. 67, no. 1, pp. 64–66, 2012. View at Publisher · View at Google Scholar · View at Scopus
  69. N. Ahmad, S. Sharma, V. Singh, S. F. Shamsi, A. Fatma, and B. R. Mehta, “Biosynthesis of silver nanoparticles from Desmodium triflorum: a novel approach towards weed utilization,” Biotechnology Research International, vol. 2011, Article ID 454090, 8 pages, 2011. View at Publisher · View at Google Scholar
  70. C. Krishnaraj, E. G. Jagan, S. Rajasekar, P. Selvakumar, P. T. Kalaichelvan, and N. Mohan, “Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens,” Colloids and Surfaces B, vol. 76, no. 1, pp. 50–56, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. J. S. Taurozzi, V. A. Hackley, and M. R. Wiesner, “CEINT/NIST protocol for preparation of nanoparticle dispersions from powdered material using ultrasonic disruption,” National Institute of Standards and Technology, Materials Science and Engineering Laboratory, Gaithersburg, Md, USA.
  72. G. Pang, X. Xu, V. Markovich et al., “Preparation of La1-xSrxMnO3 nanoparticles by sonication-assisted coprecipitation,” Materials Research Bulletin, vol. 38, no. 1, pp. 11–16, 2003. View at Publisher · View at Google Scholar · View at Scopus
  73. Z. Lei, L. Zhang, and X. Wei, “One-step synthesis of silver nanoparticles by sonication or heating using amphiphilic block copolymer as templates,” Journal of Colloid and Interface Science, vol. 324, no. 1-2, pp. 216–219, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. R. O. Al-Kaysi, A. M. Müller, T. S. Ahn, S. Lee, and C. J. Bardeen, “Effects of sonication on the size and crystallinity of stable zwitterionic organic nanoparticles formed by reprecipitation in water,” Langmuir, vol. 21, no. 17, pp. 7990–7994, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. A. M. Shanmugharaj and S. H. Ryu, “Excellent electrochemical performance of graphene-silver nanoparticle hybrids prepared using a microwave spark assistance process,” Electrochimica Acta, vol. 74, pp. 207–214, 2012. View at Publisher · View at Google Scholar · View at Scopus
  76. K. S. Hui, K. N. Hui, D. A. Dinh et al., “Green synthesis of dimension-controlled silver nanoparticle-graphene oxide with in situ ultrasonication,” Acta Materialia, vol. 64, pp. 326–332, 2014. View at Publisher · View at Google Scholar
  77. S. Taherian, M. H. Entezari, and N. Ghows, “Sono-catalytic degradation and fast mineralization of p-chlorophenol: La0.7Sr0.3MnO3 as a nano-magnetic green catalyst,” Ultrasonics Sonochemistry, vol. 20, no. 6, pp. 1419–1427, 2013. View at Publisher · View at Google Scholar
  78. S. K. Saha, P. Chowdhury, P. Saini, and S. P. S. Babu, “Ultrasound assisted green synthesis of poly(vinyl alcohol) cappedsilver nanoparticles for the study of its antifilarial efficacy,” Applied Surface Science, vol. 288, pp. 625–632, 2014. View at Publisher · View at Google Scholar
  79. S. Anandhakumar and A. M. Raichur, “Polyelectrolyte/silver nanocomposite multilayer films as multifunctional thin film platforms for remote activated protein and drug delivery,” Acta Biomaterialia, vol. 9, no. 11, pp. 8864–8874, 2013. View at Publisher · View at Google Scholar
  80. K. Vimala, S. Sundarraj, M. Paulpandi, S. Vengatesan, and S. Kannan, “Green synthesized doxorubicin loaded zinc oxide nanoparticles regulates the Bax and Bcl-2 expression in breast and colon carcinoma,” Process Biochemistry, vol. 49, no. 1, pp. 160–172, 2014. View at Publisher · View at Google Scholar
  81. N. Ghows and M. H. Entezari, “Sono-synthesis of core-shell nanocrystal (CdS/TiO2) without surfactant,” Ultrasonics Sonochemistry, vol. 19, no. 5, pp. 1070–1078, 2012. View at Publisher · View at Google Scholar · View at Scopus
  82. R. Konwarh, N. Karak, C. E. Sawian, S. Baruah, and M. Mandal, “Effect of sonication and aging on the templating attribute of starch for “green” silver nanoparticles and their interactions at bio-interface,” Carbohydrate Polymers, vol. 83, no. 3, pp. 1245–1252, 2011. View at Publisher · View at Google Scholar · View at Scopus