Table of Contents
Journal of Nanoparticles
Volume 2014 (2014), Article ID 689419, 6 pages
http://dx.doi.org/10.1155/2014/689419
Research Article

Biogenic Synthesis of Silver Nanoparticles Using Scenedesmus abundans and Evaluation of Their Antibacterial Activity

1Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh 201303, India
2Department of Bio-Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India

Received 6 August 2014; Revised 23 August 2014; Accepted 25 August 2014; Published 14 September 2014

Academic Editor: Amir Kajbafvala

Copyright © 2014 Nafe Aziz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Mukherjee, A. Ahmad, D. Mandal et al., “Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis,” Nano Letters, vol. 1, no. 10, pp. 515–519, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Kajbafvala, J. P. Samberg, H. Ghorbani, E. Kajbafvala, and S. K. Sadrnezhaad, “Effects of initial precursor and microwave irradiation on step-by-step synthesis of zinc oxide nano-architectures,” Materials Letters, vol. 67, no. 1, pp. 342–345, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Kajbafvala, M. R. Shayegh, M. Mazloumi et al., “Nanostructure sword-like ZnO wires: rapid synthesis and characterization through a microwave-assisted route,” Journal of Alloys and Compounds, vol. 469, no. 1-2, pp. 293–297, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Sinha, I. Pan, P. Chanda, and S. K. Sen, “Nanoparticles fabrication using ambient biological resources,” Jounal of Applied Biological Science, vol. 19, pp. 1113–1130, 2009. View at Google Scholar
  5. B. Wiley, Y. Sun, and Y. Xia, “Synthesis of silver nanostructures with controlled shapes and properties,” Chemical Research, vol. 40, no. 10, pp. 1067–1076, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Kajbafvala, H. Ghorbani, A. Paravar, J. P. Samberg, E. Kajbafvala, and S. K. Sadrnezhaad, “Effects of morphology on photocatalytic performance of Zinc oxide nanostructures synthesized by rapid microwave irradiation methods,” Superlattices and Microstructures, vol. 51, no. 4, pp. 512–522, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Kajbafvala, S. Zanganeh, E. Kajbafvala, H. R. Zargar, M. R. Bayati, and S. K. Sadrnezhaad, “Microwave-assisted synthesis of narcis-like zinc oxide nanostructures,” Journal of Alloys and Compounds, vol. 497, no. 1-2, pp. 325–329, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. H. J. Klasen, “A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver,” Burns, vol. 26, no. 2, pp. 131–138, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. F. Huang, H. T. Chang, and W. Tan, “Cancer cell targeting using multiple aptamers conjugated on nanorods,” Analytical Chemistry, vol. 80, no. 3, pp. 567–572, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Chakraborty, R. Pal, A. Ramaswami, D. Nayak, and S. Lahiri, “Diatom: a potential bio-accumulator of gold,” Journal of Radioanalytical and Nuclear Chemistry, vol. 270, no. 3, pp. 645–649, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Parial, H. K. Patra, A. K. R. Dasgupta, and R. Pal, “Screening of different algae for green synthesis of gold nanoparticles,” European Journal of Phycology, vol. 47, no. 1, pp. 22–29, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Nethradevi, P. Sivakumar, and S. Renganathan, “Green synthesis of silver nanoparticles using datura metel flower extract and evaluation of their antimicrobial activity,” International Journal of Nanomaterials and Biostructures, vol. 2, pp. 16–21, 2012. View at Google Scholar
  13. R. R. Nayak, N. Pradhan, D. Behera et al., “Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF: the process and optimization,” Journal of Nanoparticle Research, vol. 13, no. 8, pp. 3129–3137, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Vijayaraj, J. Anarkali, K. Rajathi, and S. Sridhar, “Green synthesis and characterization of silver nanoparticles from the leaf extract of aristolochia bracteata and its antimicrobial efficacy,” International Journal of Nanomaterials and Biostructures, vol. 2, pp. 11–15, 2012. View at Google Scholar
  15. A. Saxena, R. M. Tripathi, F. Zafar, and P. Singh, “Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity,” Materials Letters, vol. 67, no. 1, pp. 91–94, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Pradhan, R. R. Nayak, A. K. Pradhan, L. B. Sukla, and B. K. Mishra, “In situ synthesis of entrapped silver nanoparticles by a fungus-penicillium purpurogenum,” Nanoscience and Nanotechnology Letters, vol. 3, no. 5, pp. 659–665, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. R. G. Haverkamp and A. T. Marshall, “The mechanism of metal nanoparticle formation in plants: limits on accumulation,” Journal of Nanoparticle Research, vol. 11, no. 6, pp. 1453–1463, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. V. K. Sharma, R. A. Yngard, and Y. Lin, “Silver nanoparticles: green synthesis and their antimicrobial activities,” Advances in Colloid and Interface Science, vol. 145, no. 1-2, pp. 83–96, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Savithramma, M. Linga Rao, K. Rukmini, and P. Suvarnalatha Devi, “Antimicrobial activity of silver nanoparticles synthesized by using medicinal plants,” International Journal of ChemTech Research, vol. 3, no. 3, pp. 1394–1402, 2011. View at Google Scholar · View at Scopus
  20. R. Prasad, “Synthesis of silver nanoparticles in photosynthetic plants,” Journal of Nanoparticles, vol. 2014, Article ID 963961, 2014. View at Publisher · View at Google Scholar
  21. K. N. Thakkar, S. S. Mhatre, and R. Y. Parikh, “Biological synthesis of metallic nanoparticles,” Nanomedicine, vol. 6, no. 2, pp. 257–262, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Vijayaraghavan and S. P. K. Nalini, “Biotemplates in the green synthesis of silver nanoparticles,” Biotechnology Journal, vol. 5, no. 10, pp. 1098–1110, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. A. L. Ahmad, N. H. M. Yasin, C. J. C. Derek, and J. K. Lim, “Microalgae as a sustainable energy source for biodiesel production: a review,” Renewable and Sustainable Energy Reviews, vol. 15, no. 1, pp. 584–593, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Rajeshkumar, C. Malarkodi, K. Paulkumar, M. Vanaja, G. Gnanajobitha, and G. Annadurai, “Algae mediated green fabrication of silver nanoparticles and examination of its antifungal activity against clinical pathogens,” International Journal of Metals, vol. 2014, Article ID 692643, 8 pages, 2014. View at Publisher · View at Google Scholar
  25. H. C. Bold and M. J. Wynne, Introduction to the Algae: Structure and Reproduction, vol. 16, Prentice-Hall, Englewood Cliffs, NJ, USA, 2nd edition, 1985.
  26. P. He, X.-H. Shen, and H.-C. Gao, “Photoluminescence phenomenon during the formation of silver nanoparticles,” Acta Physico-Chimica Sinica, vol. 20, no. 10, pp. 1200–1203, 2004. View at Google Scholar · View at Scopus
  27. N. Vigneshwaran, A. A. Kathe, P. V. Varadarajan, R. P. Nachane, and R. H. Balasubramanya, “Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium,” Colloids and Surfaces B: Biointerfaces, vol. 53, no. 1, pp. 55–59, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Prasad, V. S. Swamy, K. S. Prasad, and A. Varma, “Biogenic synthesis of silver nanoparticles from the leaf extract of Syzygium cumini (L.) and its antibacterial activity,” International Journal of Pharma and Bio Sciences, vol. 3, no. 4, pp. 745–752, 2012. View at Google Scholar · View at Scopus
  29. N. Prabhu, D. T. Raj, K. Yamuna Gowri, S. Ayisha Siddiqua, and D. Joseph Puspha Innocent, “Synthesis of silver phyto nanoparticles and their antibacterial efficacy,” Digest Journal of Nanomaterials and Biostructures, vol. 5, no. 1, pp. 185–189, 2010. View at Google Scholar · View at Scopus
  30. R. Prasad, V. Kumar, and K. S. Prasad, “Nanotechnology in sustainable agriculture: present concerns and future aspects,” African Journal of Biotechnology, vol. 13, pp. 705–713, 2014. View at Google Scholar
  31. V. S. Swamy and R. Prasad, “Green synthesis of silver nanoparticles from the leaf extract of Santalum album and its antimicrobial activity,” Journal of Optoelectronic and Biomedical Materials, vol. 4, no. 3, pp. 53–59, 2012. View at Google Scholar
  32. A. Saxena, R. M. Tripathi, and R. P. Singh, “Biological synthesis of silver nanoparticles by using onion Allium cepa extract and their antibacterial activity,” Digest Journal of Nanomaterials and Biostructures, vol. 5, no. 2, pp. 427–432, 2010. View at Google Scholar · View at Scopus
  33. G. C. Schatz and R. P. van-Duyne, “Electromagnetic enhancement of surface-enhanced raman spectroscopy,” in Handbook of Vibrational Spectroscopy, J. M. Chalmers and P. R. Griffiths, Eds., Wiley, New York, NY, USA, 2002. View at Google Scholar
  34. T. A. Davis, B. Volesky, and A. Mucci, “A review of the biochemistry of heavy metal biosorption by brown algae,” Water Research, vol. 37, no. 18, pp. 4311–4330, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. A. B. G. Lansdown, “Silver. I: its antibacterial properties and mechanism of action,” Journal of Wound Care, vol. 11, no. 4, pp. 125–130, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. I. Sondi and B. Salopek-Sondi, “Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria,” Journal of Colloid and Interface Science, vol. 275, no. 1, pp. 177–182, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. R. M. Tripathi, D. Rana, A. Shrivastava, R. P. Singh, and B. R. Shrivastav, “Biogenic synthesis of silver nanoparticles using Saraca indica leaf extract and evaluation of their antibacterial activity,” Nano Biomedicine and Engineering, vol. 5, no. 1, pp. 50–56, 2013. View at Google Scholar
  38. J. R. Morones, J. L. Elechiguerra, A. Camacho et al., “The bactericidal effect of silver nanoparticles,” Nanotechnology, vol. 16, no. 10, pp. 2346–2353, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Prasad and V. S. Swamy, “Antibacterial activity of silver nanoparticles synthesized by bark extract of Syzygium cumini,” Journal of Nanoparticles, vol. 2013, Article ID 431218, 6 pages, 2013. View at Publisher · View at Google Scholar
  40. S. S. Birla, S. C. Gaikwad, A. K. Gade, and M. K. Rai, “Rapid synthesis of silver nanoparticles from Fusarium oxysporum by optimizing physicocultural conditions,” The Scientific World Journal, vol. 2013, Article ID 796018, 12 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Xie, J. Y. Lee, D. I. C. Wang, and Y. P. Ting, “Silver nanoplates: from biological to biomimetic synthesis,” ACS Nano, vol. 1, no. 5, pp. 429–439, 2007. View at Publisher · View at Google Scholar · View at Scopus