Table of Contents
Journal of Oral Implants
Volume 2015 (2015), Article ID 527426, 14 pages
http://dx.doi.org/10.1155/2015/527426
Review Article

Composition and Modifications of Dental Implant Surfaces

1Department for Cranio-Maxillofacial and Oral Surgery, Medical University of Innsbruck, Maximilianstrasse 10, 6020 Innsbruck, Austria
2DiaCoating GmbH, Mitterweg 24, 6020 Innsbruck, Austria

Received 26 September 2014; Revised 17 December 2014; Accepted 18 December 2014

Academic Editor: Sven Rinke

Copyright © 2015 Michela Bruschi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. D. Pye, D. E. A. Lockhart, M. P. Dawson, C. A. Murray, and A. J. Smith, “A review of dental implants and infection,” Journal of Hospital Infection, vol. 72, no. 2, pp. 104–110, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. N. C. Geurs, R. L. Jeffcoat, E. A. McGlumphy, M. S. Reddy, and M. K. Jeffcoat, “Influence of implant geometry and surface characteristics on progressive osseointegration,” International Journal of Oral and Maxillofacial Implants, vol. 17, no. 6, pp. 811–815, 2002. View at Google Scholar · View at Scopus
  3. J. B. Brunski, “Biomaterials and biomechanics in dental implant design,” The International Journal of Oral & Maxillofacial Implants, vol. 3, no. 2, pp. 85–97, 1988. View at Google Scholar · View at Scopus
  4. J. E. Lemons, “Biomaterials, biomechanics, tissue healing, and immediate-function dental implants,” The Journal of Oral Implantology, vol. 30, no. 5, pp. 318–324, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. F. Marco, F. Milena, G. Gianluca, and O. Vittoria, “Peri-implant osteogenesis in health and osteoporosis,” Micron, vol. 36, no. 7-8, pp. 630–644, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. C. E. Misch, M. L. Perel, H.-L. Wang et al., “Implant success, survival, and failure: The International Congress of Oral Implantologists (ICOI) pisa consensus conference,” Implant Dentistry, vol. 17, no. 1, pp. 5–15, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. L. W. Lindquist, G. E. Carlsson, and T. Jemt, “A prospective 15-year follow-up study of mandibular fixed prostheses supported by osseointegrated implants: clinical results and marginal bone loss,” Clinical Oral Implants Research, vol. 7, no. 2, pp. 329–336, 1996. View at Publisher · View at Google Scholar · View at Scopus
  8. Z. Simon and P. A. Watson, “Biomimetic dental implants—new ways to enhance osseointegration,” Journal (Canadian Dental Association), vol. 68, no. 5, pp. 286–288, 2002. View at Google Scholar · View at Scopus
  9. F. R. Kloss and R. Gassner, “Bone and aging: effects on the maxillofacial skeleton,” Experimental Gerontology, vol. 41, no. 2, pp. 123–129, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. S. Lavenus, J.-C. Ricquier, G. Louarn, and P. Layrolle, “Cell interaction with nanopatterned surface of implants,” Nanomedicine, vol. 5, no. 6, pp. 937–947, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. J. B. Brunski, D. A. Puleo, and A. Nanci, “Biomaterials and biomechanics of oral and maxillofacial implants: current status and future developments,” International Journal of Oral and Maxillofacial Implants, vol. 15, no. 1, pp. 15–46, 2000. View at Google Scholar · View at Scopus
  12. Z. Schwartz and B. D. Boyan, “Underlying mechanisms at the bone-biomaterial interface,” Journal of Cellular Biochemistry, vol. 56, no. 3, pp. 340–347, 1994. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. X. Liu, P. K. Chu, and C. Ding, “Surface modification of titanium, titanium alloys, and related materials for biomedical applications,” Materials Science and Engineering R: Reports, vol. 47, no. 3-4, pp. 49–121, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Morra, “Biochemical modification of titanium surfaces: peptides and ECM proteins,” European Cells and Materials, vol. 12, pp. 1–15, 2006. View at Google Scholar · View at Scopus
  15. H. Matsuno, A. Yokoyama, F. Watari, M. Uo, and T. Kawasaki, “Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium,” Biomaterials, vol. 22, no. 11, pp. 1253–1262, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Mohammadi, M. Esposito, M. Cucu, L. E. Ericson, and P. Thomsen, “Tissue response to hafnium,” Journal of Materials Science: Materials in Medicine, vol. 12, no. 7, pp. 603–611, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Black, “Biological performance of tantalum,” Clinical Materials, vol. 16, no. 3, pp. 167–173, 1994. View at Publisher · View at Google Scholar · View at Scopus
  18. M. P. Casaletto, G. M. Ingo, S. Kaciulis, G. Mattogno, L. Pandolfi, and G. Scavia, “Surface studies of in vitro biocompatibility of titanium oxide coatings,” Applied Surface Science, vol. 172, no. 1-2, pp. 167–177, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. M. McCracken, “Dental implant materials: commercially pure titanium and titanium alloys,” Journal of Prosthodontics, vol. 8, no. 1, pp. 40–43, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Mouhyi, D. M. Dohan Ehrenfest, and T. Albrektsson, “The peri-implantitis: implant surfaces, microstructure, and physicochemical aspects,” Clinical Implant Dentistry and Related Research, vol. 14, no. 2, pp. 170–183, 2012. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. M. Ahmad, D. Gawronski, J. Blum, J. Goldberg, and G. Gronowicz, “Differential response of human osteoblast-like cells to commercially pure (cp) titanium grades 1 and 4,” Journal of Biomedical Materials Research, vol. 46, no. 1, pp. 121–131, 1999. View at Publisher · View at Google Scholar
  22. D. M. D. Ehrenfest, P. G. Coelho, B.-S. Kang, Y.-T. Sul, and T. Albrektsson, “Classification of osseointegrated implant surfaces: materials, chemistry and topography,” Trends in Biotechnology, vol. 28, no. 4, pp. 198–206, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. H. W. Roberts, D. W. Berzins, B. K. Moore, and D. G. Charlton, “Metal-ceramic alloys in dentistry: a review,” Journal of Prosthodontics, vol. 18, no. 2, pp. 188–194, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. R. Narayan, Biomedical Materials, Springer, New York, NY, USA, 2009.
  25. F. Schwarz, M. Herten, M. Sager, M. Wieland, M. Dard, and J. Becker, “Bone regeneration in dehiscence-type defects at chemically modified (SLActive) and conventional SLA titanium implants: a pilot study in dogs,” Journal of Clinical Periodontology, vol. 34, no. 1, pp. 78–86, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. W. R. Lacefield, “Materials characteristics of uncoated/ceramic-coated implant materials,” Advances in Dental Research, vol. 13, pp. 21–26, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Long and H. J. Rack, “Titanium alloys in total joint replacement—a materials science perspective,” Biomaterials, vol. 19, no. 18, pp. 1621–1639, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. C. N. Elias, Y. Oshida, J. H. C. Lima, and C. A. Muller, “Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant removal torque,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 1, no. 3, pp. 234–242, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. A. S. Guilherme, G. E. Pessanha Henriques, R. A. Zavanelli, and M. F. Mesquita, “Surface roughness and fatigue performance of commercially pure titanium and Ti-6Al-4V alloy after different polishing protocols,” Journal of Prosthetic Dentistry, vol. 93, no. 4, pp. 378–385, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. N. A. Al-Mobarak, A. A. Al-Swayih, and F. A. Al-Rashoud, “Corrosion behavior of Ti-6Al-7Nb alloy in biological solution for dentistry applications,” International Journal of Electrochemical Science, vol. 6, no. 6, pp. 2031–2042, 2011. View at Google Scholar · View at Scopus
  31. G.-K. Li, F. Gao, and Z.-G. Wang, “A photogrammetry-based system for 3D surface reconstruction of prosthetics and orthotics,” in Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC '11), pp. 8459–8462, Boston, Mass, USA, 2011. View at Publisher · View at Google Scholar · View at PubMed
  32. B. L. Wang, L. Li, and Y. F. Zheng, “In vitro cytotoxicity and hemocompatibility studies of Ti-Nb, Ti-Nb-Zr and Ti-Nb-Hf biomedical shape memory alloys,” Biomedical Materials, vol. 5, no. 4, Article ID 044102, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. A. Fukuda, M. Takemoto, T. Saito et al., “Bone bonding bioactivity of Ti metal and Ti-Zr-Nb-Ta alloys with Ca ions incorporated on their surfaces by simple chemical and heat treatments,” Acta Biomaterialia, vol. 7, no. 3, pp. 1379–1386, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. T. Osathanon, K. Bespinyowong, M. Arksornnukit, H. Takahashi, and P. Pavasant, “Human osteoblast-like cell spreading and proliferation on Ti-6Al-7Nb surfaces of varying roughness,” Journal of Oral Science, vol. 53, no. 1, pp. 23–30, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. J.-W. Lee, D.-J. Lin, C.-P. Ju, H.-S. Yin, C.-C. Chuang, and J.-H. C. Lin, “In-vitro and in-vivo evaluation of a new Ti-15Mo-1Bi alloy,” Journal of Biomedical Materials Research—Part B Applied Biomaterials, vol. 91, no. 2, pp. 643–650, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. D.-J. Lin, C.-C. Chuang, J.-H. Chern Lin, J.-W. Lee, C.-P. Ju, and H.-S. Yin, “Bone formation at the surface of low modulus Ti-7.5Mo implants in rabbit femur,” Biomaterials, vol. 28, no. 16, pp. 2582–2589, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. I. C. Lavos-Valereto, B. König, C. Rossa, E. Marcantonio, and A. C. Zavaglia, “A study of histological responses from Ti-6Al-7Nb alloy dental implants with and without plasma-sprayed hydroxyapatite coating in dogs,” Journal of Materials Science: Materials in Medicine, vol. 12, no. 3, pp. 273–276, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. P. F. Manicone, P. Rossi Iommetti, and L. Raffaelli, “An overview of zirconia ceramics: basic properties and clinical applications,” Journal of Dentistry, vol. 35, no. 11, pp. 819–826, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. A.-L. Gomes and J. Montero, “Zirconia implant abutments: a review,” Medicina Oral, Patología Oral y Cirugía Bucal, vol. 16, no. 1, pp. e50–e55, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. R.-J. Kohal, M. Wolkewitz, and C. Mueller, “Alumina-reinforced zirconia implants: survival rate and fracture strength in a masticatory simulation trials,” Clinical Oral Implants Research, vol. 21, no. 12, pp. 1345–1352, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. G. Heydecke, R. Kohal, and R. Gläser, “Optimal esthetics in single-tooth replacement with the re-implant system: a case report,” International Journal of Prosthodontics, vol. 12, no. 2, pp. 184–189, 1999. View at Google Scholar · View at Scopus
  42. Y. Josset, Z. Oum'Hamed, A. Zarrinpour, M. Lorenzato, J. J. Adnet, and D. Laurent-Maquin, “In vitro reactions of human osteoblasts in culture with zirconia and alumina ceramics,” Journal of Biomedical Materials Research, vol. 47, no. 4, pp. 481–493. View at Publisher · View at Google Scholar
  43. R. J. Kohal, D. Weng, M. Bächle, and J. R. Strub, “Loaded custom-made zirconia and titanium implants show similar osseointegration: an animal experiment,” Journal of Periodontology, vol. 75, no. 9, pp. 1262–1268, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. A. Scarano, F. Di Carlo, M. Quaranta, and A. Piattelli, “Bone response to zirconia ceramic implants: an experimental study in rabbits,” Journal of Oral Implantology, vol. 29, no. 1, pp. 8–12, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Schultze-Mosgau, H. Schliephake, M. Radespiel-Tröger, and F. W. Neukam, “Osseointegration of endodontic endosseous cones: zirconium oxide vs titanium,” Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics, vol. 89, no. 1, pp. 91–98, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Gottlow, M. Dard, F. Kjellson, M. Obrecht, and L. Sennerby, “Evaluation of a new titanium-zirconium dental implant: a biomechanical and histological comparative study in the mini pig,” Clinical Implant Dentistry and Related Research, vol. 14, no. 4, pp. 538–545, 2012. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. N. Patil, K. Lee, and S. B. Goodman, “Porous tantalum in hip and knee reeonstruetive surgery,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 89, no. 1, pp. 242–251, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. Zhang, P. B. Ahn, D. C. Fitzpatrick, A. D. Heiner, R. A. Poggie, and T. D. Brown, “Interfacial frictional behavior: cancellous bone, cortical bone, and a novel porous tantalum biomaterial,” Journal of Musculoskeletal Research, vol. 3, no. 4, pp. 245–251, 1999. View at Publisher · View at Google Scholar · View at Scopus
  49. J. F. Blanco, F. M. Sánchez-Guijo, S. Carrancio, S. Muntion, J. García-Briñon, and M.-C. del Cañizo, “Titanium and tantalum as mesenchymal stem cell scaffolds for spinal fusion: an in vitro comparative study,” European Spine Journal, vol. 20, no. 3, pp. 353–360, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. D. M. Findlay, K. Welldon, G. J. Atkins, D. W. Howie, A. C. W. Zannettino, and D. Bobyn, “The proliferation and phenotypic expression of human osteoblasts on tantalum metal,” Biomaterials, vol. 25, no. 12, pp. 2215–2227, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Stiehler, M. Lind, T. Mygind et al., “Morphology, proliferation, and osteogenic differentiation of mesenchymal stem cells cultured on titanium, tantalum, and chromium surfaces,” Journal of Biomedical Materials Research Part A, vol. 86A, p. 448, 2008. View at Google Scholar
  52. L. D. Zardiackas, D. E. Parsell, L. D. Dillon, D. W. Mitchell, L. A. Nunnery, and R. Poggie, “Structure, metallurgy, and mechanical properties of a porous tantalum foam,” Journal of Biomedical Materials Research, vol. 58, no. 2, pp. 180–187, 2001. View at Publisher · View at Google Scholar
  53. P. F. Lachiewicz, M. P. Bolognesi, R. A. Henderson, E. S. Soileau, and T. P. Vail, “Can tantalum cones provide fixation in complex revision knee arthroplasty?” Clinical Orthopaedics and Related Research, vol. 470, no. 1, pp. 199–204, 2012. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. J. L. Howard, J. Kudera, D. G. Lewallen, and A. D. Hanssen, “Early results of the use of tantalum femoral cones for revision total knee arthroplasty,” The Journal of Bone & Joint Surgery A, vol. 93, no. 5, pp. 478–484, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. X.-N. Gu and Y.-F. Zheng, “A review on magnesium alloys as biodegradable materials,” Frontiers of Materials Science in China, vol. 4, no. 2, pp. 111–115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. F. Witte, “The history of biodegradable magnesium implants: a review,” Acta Biomaterialia, vol. 6, no. 5, pp. 1680–1692, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. C. Castellani, R. A. Lindtner, P. Hausbrandt et al., “Bone-implant interface strength and osseointegration: biodegradable magnesium alloy versus standard titanium control,” Acta Biomaterialia, vol. 7, no. 1, pp. 432–440, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. T. Kraus, S. F. Fischerauer, A. C. Hänzi, P. J. Uggowitzer, J. F. Löffler, and A. M. Weinberg, “Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone,” Acta Biomaterialia, vol. 8, no. 3, pp. 1230–1238, 2012. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. M. P. Staiger, A. M. Pietak, J. Huadmai, and G. Dias, “Magnesium and its alloys as orthopedic biomaterials: a review,” Biomaterials, vol. 27, no. 9, pp. 1728–1734, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. F. Witte, J. Fischer, J. Nellesen et al., “In vitro and in vivo corrosion measurements of magnesium alloys,” Biomaterials, vol. 27, no. 7, pp. 1013–1018, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. S. Keim, J. G. Brunner, B. Fabry, and S. Virtanen, “Control of magnesium corrosion and biocompatibility with biomimetic coatings,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 96, no. 1, pp. 84–90, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. H. Zreiqat, C. R. Howlett, A. Zannettino et al., “Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants,” Journal of Biomedical Materials Research, vol. 62, no. 2, pp. 175–184, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. F. Witte, V. Kaese, H. Haferkamp et al., “In vivo corrosion of four magnesium alloys and the associated bone response,” Biomaterials, vol. 26, no. 17, pp. 3557–3563, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. S.-F. Zhao, Q.-H. Jiang, S. Peel, X.-X. Wang, and F.-M. He, “Effects of magnesium-substituted nanohydroxyapatite coating on implant osseointegration,” Clinical Oral Implants Research, vol. 24, no. 100, pp. 34–41, 2013. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. M. H. Fathi, M. Salehi, A. Saatchi, V. Mortazavi, and S. B. Moosavi, “In vitro corrosion behavior of bioceramic, metallic, and bioceramic-metallic coated stainless steel dental implants,” Dental Materials, vol. 19, no. 3, pp. 188–198, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. I. Gotman, “Characteristics of metals used in implants,” Journal of Endourology, vol. 11, no. 6, pp. 383–389, 1997. View at Publisher · View at Google Scholar · View at Scopus
  67. S. Morais, J. P. Sousa, M. H. Fernandes, G. S. Carvalho, J. D. de Bruijn, and C. A. van Blitterswijk, “Decreased consumption of Ca and P during in vitro biomineralization and biologically induced deposition of Ni and Cr in presence of stainless steel corrosion products,” Journal of Biomedical Materials Research, vol. 42, no. 2, pp. 199–212, 1998. View at Publisher · View at Google Scholar
  68. Y.-R. Yoo, S.-G. Jang, K.-T. Oh, J.-G. Kim, and Y.-S. Kim, “Influences of passivating elements on the corrosion and biocompatibility of super stainless steels,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 86, no. 2, pp. 310–320, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. A. J. Ortiz, E. Fernández, A. Vicente, J. L. Calvo, and C. Ortiz, “Metallic ions released from stainless steel, nickel-free, and titanium orthodontic alloys: toxicity and DNA damage,” The American Journal of Orthodontics and Dentofacial Orthopedics, vol. 140, no. 3, pp. e115–e122, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. M. H. Fathi and V. Mortazavi, “Tantalum, niobium and titanium coatings for biocompa improvement of dental implants,” Dental Research Journal, vol. 4, pp. 74–82, 2008. View at Google Scholar
  71. A. Palmquist, O. M. Omar, M. Esposito, J. Lausmaa, and P. Thomsen, “Titanium oral implants: surface characteristics, interface biology and clinical outcome,” Journal of the Royal Society Interface, vol. 7, no. 5, pp. S515–S527, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. J. Forsgren and H. Engqvist, “A novel method for local administration of strontium from implant surfaces,” Journal of Materials Science: Materials in Medicine, vol. 21, no. 5, pp. 1605–1609, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. J. Venkatesan and S.-K. Kim, “Chitosan composites for bone tissue engineering—an overview,” Marine Drugs, vol. 8, no. 8, pp. 2252–2266, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. B. R. Levine, S. Sporer, R. A. Poggie, C. J. D. Valle, and J. J. Jacobs, “Experimental and clinical performance of porous tantalum in orthopedic surgery,” Biomaterials, vol. 27, pp. 4671–4681, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. J. E. Davies, “Understanding peri-implant endosseous healing,” Journal of Dental Education, vol. 67, no. 8, pp. 932–949, 2003. View at Google Scholar · View at Scopus
  76. D. A. Puleo, R. A. Kissling, and M.-S. Sheu, “A technique to immobilize bioactive proteins, including bone morphogenetic protein-4 (BMP-4), on titanium alloy,” Biomaterials, vol. 23, no. 9, pp. 2079–2087, 2002. View at Publisher · View at Google Scholar · View at Scopus
  77. N. Hijón, M. V. Cabañas, I. Izquierdo-Barba, M. A. García, and M. Vallet-Regí, “Nanocrystalline bioactive apatite coatings,” Solid State Sciences, vol. 8, no. 6, pp. 685–691, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. L.-H. Li, Y.-M. Kong, H.-W. Kim et al., “Improved biological performance of Ti implants due to surface modification by micro-arc oxidation,” Biomaterials, vol. 25, no. 14, pp. 2867–2875, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. L. L. Hench, “The story of Bioglass,” Journal of Materials Science: Materials in Medicine, vol. 17, no. 11, pp. 967–978, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. M. N. Rahaman, D. E. Day, B. Sonny Bal et al., “Bioactive glass in tissue engineering,” Acta Biomaterialia, vol. 7, no. 6, pp. 2355–2373, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  81. M. Vallet-Regí and E. Ruiz-Hernández, “Bioceramics: from bone regeneration to cancer nanomedicine,” Advanced Materials, vol. 23, no. 44, pp. 5177–5218, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. W. Liang, M. N. Rahaman, D. E. Day, N. W. Marion, G. C. Riley, and J. J. Mao, “Bioactive borate glass scaffold for bone tissue engineering,” Journal of Non-Crystalline Solids, vol. 354, no. 15-16, pp. 1690–1696, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. M. Uo, M. Mizuno, Y. Kuboki, A. Makishima, and F. Watari, “Properties and cytotoxicity of water soluble Na2O-CaO-P2O5 glasses,” Biomaterials, vol. 19, no. 24, pp. 2277–2284, 1998. View at Publisher · View at Google Scholar · View at Scopus
  84. A. Hoppe, N. S. Güldal, and A. R. Boccaccini, “A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics,” Biomaterials, vol. 32, no. 11, pp. 2757–2774, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  85. E. Verné, C. Vitale-Brovarone, E. Bui, C. L. Bianchi, and A. R. Boccaccini, “Surface functionalization of bioactive glasses,” Journal of Biomedical Materials Research—Part A, vol. 90, no. 4, pp. 981–992, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  86. X. Liu, Z. Xie, C. Zhang et al., “Bioactive borate glass scaffolds: in vitro and in vivo evaluation for use as a drug delivery system in the treatment of bone infection,” Journal of Materials Science: Materials in Medicine, vol. 21, no. 2, pp. 575–582, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  87. Q. Fu, M. N. Rahaman, H. Fu, and X. Liu, “Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation,” Journal of Biomedical Materials Research Part A, vol. 95, no. 1, pp. 164–171, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  88. E. Saino, V. Maliardi, E. Quartarone et al., “In vitro enhancement of SAOS-2 cell calcified matrix deposition onto radio frequency magnetron sputtered bioglass-coated titanium scaffolds,” Tissue Engineering Part A, vol. 16, no. 3, pp. 995–1008, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  89. S. Mistry, D. Kundu, S. Datta, and D. Basu, “Comparison of bioactive glass coated and hydroxyapatite coated titanium dental implants in the human jaw bone,” Australian Dental Journal, vol. 56, no. 1, pp. 68–75, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  90. A. L. Oliveira, R. L. Reis, and P. Li, “Strontium-substituted apatite coating grown on Ti6Al4V substrate through biomimetic synthesis,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 83, no. 1, pp. 258–265, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  91. G. X. Ni, W. W. Lu, K. Y. Chiu, Z. Y. Li, D. Y. T. Fong, and K. D. K. Luk, “Strontium-containing hydroxyapatite (Sr-HA) bioactive cement for primary hip replacement: an in vivo study,” Journal of Biomedical Materials Research—Part B Applied Biomaterials, vol. 77, no. 2, pp. 409–415, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  92. C. Capuccini, P. Torricelli, F. Sima et al., “Strontium-substituted hydroxyapatite coatings synthesized by pulsed-laser deposition: in vitro osteoblast and osteoclast response,” Acta Biomaterialia, vol. 4, no. 6, pp. 1885–1893, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  93. J.-W. Park, Y.-J. Kim, and J.-H. Jang, “Enhanced osteoblast response to hydrophilic strontium and/or phosphate ions-incorporated titanium oxide surfaces,” Clinical Oral Implants Research, vol. 21, no. 4, pp. 398–408, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  94. J.-W. Park, “Increased bone apposition on a titanium oxide surface incorporating phosphate and strontium,” Clinical Oral Implants Research, vol. 22, no. 2, pp. 230–234, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  95. S. Takaoka, T. Yamaguchi, S. Yano, M. Yamauchi, and T. Sugimoto, “The calcium-sensing receptor (CaR) is involved in strontium ranelate-induced osteoblast differentiation and mineralization,” Hormone and Metabolic Research, vol. 42, no. 9, pp. 627–631, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  96. A. S. Hurtel-Lemaire, R. Mentaverri, A. Caudrillier et al., “The calcium-sensing receptor is involved in strontium ranelate-induced osteoclast apoptosis: new insights into the associated signaling pathways,” The Journal of Biological Chemistry, vol. 284, no. 1, pp. 575–584, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  97. R. K. Roy and K.-R. Lee, “Biomedical applications of diamond-like carbon coatings: a review,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 83, no. 1, pp. 72–84, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  98. J. Robertson, “Diamond-like amorphous carbon,” Materials Science and Engineering: R: Reports, vol. 37, no. 4–6, pp. 129–282, 2002. View at Publisher · View at Google Scholar · View at Scopus
  99. M. Allen, B. Myer, and N. Rushton, “In vitro and in vivo investigations into the biocompatibility of diamond-like carbon (DLC) coatings for orthopedic applications,” Journal of Biomedical Materials Research, vol. 58, no. 3, pp. 319–328, 2001. View at Publisher · View at Google Scholar
  100. M. Mohanty, T. V. Anilkumar, P. V. Mohanan et al., “Long term tissue response to titanium coated with diamond like carbon,” Biomolecular Engineering, vol. 19, no. 2–6, pp. 125–128, 2002. View at Publisher · View at Google Scholar · View at Scopus
  101. G. F. Huang, Z. Lingping, H. Weiqing, Z. Lihua, L. Shaolu, and L. Deyi, “The mechanical performance and anti-corrosion behavior of diamond-like carbon film,” Diamond and Related Materials, vol. 12, no. 8, pp. 1406–1410, 2003. View at Publisher · View at Google Scholar · View at Scopus
  102. A. Grill, “Diamond-like carbon coatings as biocompatible materials—an overview,” Diamond and Related Materials, vol. 12, no. 2, pp. 166–170, 2003. View at Publisher · View at Google Scholar · View at Scopus
  103. L. Booth, S. A. Catledge, D. Nolen, R. G. Thompson, and Y. K. Vohra, “Synthesis and characterization of multilayered diamond coatings for biomedical implants,” Materials, vol. 4, no. 5, pp. 857–868, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  104. T. Lechleitner, F. Klauser, T. Seppi et al., “The surface properties of nanocrystalline diamond and nanoparticulate diamond powder and their suitability as cell growth support surfaces,” Biomaterials, vol. 29, no. 32, pp. 4275–4284, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  105. M. Amaral, P. S. Gomes, M. A. Lopes, J. D. Santos, R. F. Silva, and M. H. Fernandes, “Nanocrystalline diamond as a coating for joint implants: cytotoxicity and biocompatibility assessment,” Journal of Nanomaterials, vol. 2008, Article ID 894352, 9 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. F. R. Kloss, M. Najam-Ul-Haq, M. Rainer et al., “Nanocrystalline diamond—an excellent platform for life science applications,” Journal of Nanoscience and Nanotechnology, vol. 7, no. 12, pp. 4581–4587, 2007. View at Publisher · View at Google Scholar · View at Scopus
  107. D. Steinmüller-Nethl, F. R. Kloss, M. Najam-Ul-Haq et al., “Strong binding of bioactive BMP-2 to nanocrystalline diamond by physisorption,” Biomaterials, vol. 27, no. 26, pp. 4547–4556, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  108. F. R. Kloss, S. Singh, O. Hächl et al., “BMP-2 immobilized on nanocrystalline diamond-coated titanium screws; demonstration of osteoinductive properties in irradiated bone,” Head & Neck, vol. 35, no. 2, pp. 235–241, 2013. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  109. M. Kalbacova, L. Michalikova, V. Baresova, A. Kromka, B. Rezek, and S. Kmoch, “Adhesion of osteoblasts on chemically patterned nanocrystalline diamonds,” Physica Status Solidi (b), vol. 245, no. 10, pp. 2124–2127, 2008. View at Publisher · View at Google Scholar · View at Scopus
  110. G. Zhao, Z. Schwartz, M. Wieland et al., “High surface energy enhances cell response to titanium substrate microstructure,” Journal of Biomedical Materials Research. Part A, vol. 74, no. 1, pp. 49–58, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  111. A. Wilkinson, R. N. Hewitt, L. E. McNamara, D. McCloy, R. M. Dominic Meek, and M. J. Dalby, “Biomimetic microtopography to enhance osteogenesis in vitro,” Acta Biomaterialia, vol. 7, no. 7, pp. 2919–2925, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  112. J. Lincks, B. D. Boyan, C. R. Blanchard et al., “Response of MG63 osteoblast-like cells to titanium and titanium alloy is dependent on surface roughness and composition,” Biomaterials, vol. 19, no. 23, pp. 2219–2232, 1998. View at Publisher · View at Google Scholar · View at Scopus
  113. B. Chehroudi, S. Ghrebi, H. Murakami, J. D. Waterfield, G. Owen, and D. M. Brunette, “Bone formation on rough, but not polished, subcutaneously implanted Ti surfaces is preceded by macrophage accumulation,” Journal of Biomedical Materials Research Part A, vol. 93, no. 2, pp. 724–737, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  114. D. D. Deligianni, N. Katsala, S. Ladas, D. Sotiropoulou, J. Amedee, and Y. F. Missirlis, “Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption,” Biomaterials, vol. 22, no. 11, pp. 1241–1251, 2001. View at Publisher · View at Google Scholar · View at Scopus
  115. K. A. Conner, R. Sabatini, B. L. Mealey, V. J. Takacs, M. P. Mills, and D. L. Cochran, “Guided bone regeneration around titanium plasma-sprayed, acid-etched, and hydroxyapatite-coated implants in the canine model,” Journal of Periodontology, vol. 74, no. 5, pp. 658–668, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  116. D. Y. Sullivan, R. L. Sherwood, and T. N. Mai, “Preliminary results of a multicenter study evaluating a chemically enhanced surface for machined commercially pure titanium implants,” The Journal of Prosthetic Dentistry, vol. 78, no. 4, pp. 379–386, 1997. View at Publisher · View at Google Scholar · View at Scopus
  117. P. G. Coelho, C. Marin, R. Granato, E. A. Bonfante, C. P. Lima, and M. Suzuki, “Surface treatment at the cervical region and its effect on bone maintenance after immediate implantation: an experimental study in dogs,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, vol. 110, no. 2, pp. 182–187, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  118. Y.-T. Sul, C. B. Johansson, K. Röser, and T. Albrektsson, “Qualitative and quantitative observations of bone tissue reactions to anodised implants,” Biomaterials, vol. 23, no. 8, pp. 1809–1817, 2002. View at Publisher · View at Google Scholar · View at Scopus
  119. L. Le Guéhennec, A. Soueidan, P. Layrolle, and Y. Amouriq, “Surface treatments of titanium dental implants for rapid osseointegration,” Dental Materials, vol. 23, no. 7, pp. 844–854, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  120. S. Szmukler-Moncler, D. Perrin, V. Ahossi, G. Magnin, and J. P. Bernard, “Biological properties of acid etched titanium implants: effect of sandblasting on bone anchorage,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 68, no. 2, pp. 149–159, 2004. View at Google Scholar · View at Scopus
  121. M. Franchi, B. Bacchelli, D. Martini et al., “Early detachment of titanium particles from various different surfaces of endosseous dental implants,” Biomaterials, vol. 25, no. 12, pp. 2239–2246, 2004. View at Publisher · View at Google Scholar · View at Scopus
  122. L. F. Cooper, T. Masuda, S. W. Whitson, P. Yliheikkilä, and D. A. Felton, “Formation of mineralizing osteoblast cultures on machined, titanium oxide grit—blasted, and plasma-sprayed titanium surfaces,” International Journal of Oral and Maxillofacial Implants, vol. 14, no. 1, pp. 37–47, 1999. View at Google Scholar · View at Scopus
  123. K. Mustafa, B. S. Lopez, K. Hultenby, A. Wennerberg, and K. Arvidson, “Attachment and proliferation of human oral fibroblasts to titanium surfaces blasted with TiO2 particles—a scanning electron microscopic and histomorphometric analysis,” Clinical Oral Implants Research, vol. 9, no. 3, pp. 195–207, 1998. View at Publisher · View at Google Scholar · View at Scopus
  124. K. Gotfredsen, A. Wennerberg, C. Johansson, L. T. Skovgaard, and E. Hjorting-Hansen, “Anchorage of TiO2-blasted, HA-coated, and machined implants: an experimental study with rabbits,” Journal of Biomedical Materials Research, vol. 29, no. 10, pp. 1223–1231, 1995. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  125. T. A. Makkonen, S. Holmberg, L. Niemi, C. Olsson, T. Tammisalo, and J. Peltola, “A 5-year prospective clinical study of Astra Tech dental implants supporting fixed bridges or overdentures in the edentulous mandible,” Clinical Oral Implants Research, vol. 8, no. 6, pp. 469–475, 1997. View at Publisher · View at Google Scholar · View at Scopus
  126. K. Arvidson, H. Bystedt, A. Frykholm, L. Von Konow, and E. Lothigius, “Five-year prospective follow-up report of the Astra Tech Dental Implant System in the treatment of edentulous mandibles,” Clinical Oral Implants Research, vol. 9, no. 4, pp. 225–234, 1998. View at Publisher · View at Google Scholar · View at Scopus
  127. M. A. de Maeztu, J. I. Alava, and C. Gay-Escoda, “Ion implantation: surface treatment for improving the bone integration of titanium and Ti6Al4V dental implants,” Clinical Oral Implants Research, vol. 14, no. 1, pp. 57–62, 2003. View at Publisher · View at Google Scholar · View at Scopus
  128. G. Mendonça, D. B. S. Mendonça, F. J. L. Aragão, and L. F. Cooper, “Advancing dental implant surface technology—from micron- to nanotopography,” Biomaterials, vol. 29, no. 28, pp. 3822–3835, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  129. B. Kasemo and J. Gold, “Implant surfaces and interface processes.,” Advances in dental research, vol. 13, pp. 8–20, 1999. View at Publisher · View at Google Scholar · View at Scopus
  130. D. S. W. Benoit and K. S. Anseth, “The effect on osteoblast function of colocalized RGD and PHSRN epitopes on PEG surfaces,” Biomaterials, vol. 26, no. 25, pp. 5209–5220, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  131. Y. Germanier, S. Tosatti, N. Broggini, M. Textor, and D. Buser, “Enhanced bone apposition around biofunctionalized sandblasted and acid-etched titanium implant surfaces: a histomorphometric study in miniature pigs,” Clinical Oral Implants Research, vol. 17, no. 3, pp. 251–257, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  132. A. E. Grigorescu and C. W. Hagen, “ZResists for sub-20-nm electron beam lithography with a focus on HSQ: state of the art,” Nanotechnology, vol. 20, no. 29, Article ID 292001, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  133. M. J. P. Biggs, R. G. Richards, N. Gadegaard, C. D. W. Wilkinson, and M. J. Dalby, “Regulation of implant surface cell adhesion: characterization and quantification of S-phase primary osteoblast adhesions on biomimetic nanoscale substrates,” Journal of Orthopaedic Research, vol. 25, no. 2, pp. 273–282, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  134. F. Gentile, L. Tirinato, E. Battista et al., “Cells preferentially grow on rough substrates,” Biomaterials, vol. 31, no. 28, pp. 7205–7212, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  135. M. Hulander, A. Lundgren, M. Berglin, M. Ohrlander, J. Lausmaa, and H. Elwing, “Immune complement activation is attenuated by surface nanotopography,” International Journal of Nanomedicine, vol. 6, pp. 2653–2666, 2011. View at Google Scholar · View at Scopus
  136. A.-S. Andersson, F. Bäckhed, A. von Euler, A. Richter-Dahlfors, D. Sutherland, and B. Kasemo, “Nanoscale features influence epithelial cell morphology and cytokine production,” Biomaterials, vol. 24, no. 20, pp. 3427–3436, 2003. View at Publisher · View at Google Scholar · View at Scopus
  137. T. J. Webster, C. Ergun, R. H. Doremus, R. W. Siegel, and R. Bizios, “Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics,” Journal of Biomedical Materials Research, vol. 51, no. 3, pp. 475–483, 2000. View at Publisher · View at Google Scholar
  138. P. T. de Oliveira and A. Nanci, “Nanotexturing of titanium-based surfaces upregulates expression of bone sialoprotein and osteopontin by cultured osteogenic cells,” Biomaterials, vol. 25, no. 3, pp. 403–413, 2004. View at Publisher · View at Google Scholar · View at Scopus
  139. K. C. Popat, K.-I. Chalvanichkul, G. L. Barnes, T. J. Latempa Jr., C. A. Grimes, and T. A. Desai, “Osteogenic differentiation of marrow stromal cells cultured on nanoporous alumina surfaces,” Journal of Biomedical Materials Research—Part A, vol. 80, no. 4, pp. 955–964, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  140. A. Wennerberg and T. Albrektsson, “Effects of titanium surface topography on bone integration: a systematic review,” Clinical Oral Implants Research, vol. 20, no. 4, pp. 172–184, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  141. N. J. Hallab, K. J. Bundy, K. O'Connor, R. L. Moses, and J. J. Jacobs, “Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion,” Tissue Engineering, vol. 7, no. 1, pp. 55–70, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  142. E. M. de Castro Lobato, Determination of surface free energies and aspect ratio of Talc [M.S. thesis], Virginia Polytechnic Institute and State University, 2004.
  143. D. Buser, N. Broggini, M. Wieland et al., “Enhanced bone apposition to a chemically modified SLA titanium surface,” Journal of Dental Research, vol. 83, no. 7, pp. 529–533, 2004. View at Publisher · View at Google Scholar · View at Scopus
  144. M. E. Schrader, “On adhesion of biological substances to low energy solid surfaces,” Journal of Colloid And Interface Science, vol. 88, no. 1, pp. 296–297, 1982. View at Publisher · View at Google Scholar · View at Scopus
  145. F. Schwarz, M. Herten, M. Sager, M. Wieland, M. Dard, and J. Becker, “Histological and immunohistochemical analysis of initial and early osseous integration at chemically modified and conventional SLA titanium implants: preliminary results of a pilot study in dogs,” Clinical Oral Implants Research, vol. 18, no. 4, pp. 481–488, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  146. F. Rupp, L. Scheideler, N. Olshanska, M. de Wild, M. Wieland, and J. Geis-Gerstorfer, “Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces,” Journal of Biomedical Materials Research Part A, vol. 76, no. 2, pp. 323–334, 2006. View at Google Scholar · View at Scopus
  147. M. Zenkiewicz, “Comparative study on the surface free energy of a solid calculated by different methods,” Polymer Testing, vol. 26, no. 1, pp. 14–19, 2007. View at Publisher · View at Google Scholar · View at Scopus
  148. J. Vlacic-Zischke, S. M. Hamlet, T. Friis, M. S. Tonetti, and S. Ivanovski, “The influence of surface microroughness and hydrophilicity of titanium on the up-regulation of TGFβ/BMP signalling in osteoblasts,” Biomaterials, vol. 32, no. 3, pp. 665–671, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  149. F. R. Kloss, R. Gassner, J. Preiner et al., “The role of oxygen termination of nanocrystalline diamond on immobilisation of BMP-2 and subsequent bone formation,” Biomaterials, vol. 29, no. 16, pp. 2433–2442, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  150. B. Finke, F. Luethen, K. Schroeder et al., “The effect of positively charged plasma polymerization on initial osteoblastic focal adhesion on titanium surfaces,” Biomaterials, vol. 28, no. 30, pp. 4521–4534, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  151. P. K. Chu, J. Y. Chen, L. P. Wang, and N. Huang, “Plasma-surface modification of biomaterials,” Materials Science and Engineering: R: Reports, vol. 36, no. 5-6, pp. 143–206, 2002. View at Publisher · View at Google Scholar · View at Scopus
  152. S. Rammelt, T. Illert, S. Bierbaum, D. Scharnweber, H. Zwipp, and W. Schneiders, “Coating of titanium implants with collagen, RGD peptide and chondroitin sulfate,” Biomaterials, vol. 27, no. 32, pp. 5561–5571, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  153. C. J. Wilson, R. E. Clegg, D. I. Leavesley, and M. J. Pearcy, “Mediation of biomaterial-cell interactions by adsorbed proteins: a review,” Tissue Engineering, vol. 11, no. 1-2, pp. 1–18, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  154. K. M. McLean, S. L. McArthur, R. C. Chatelier, P. Kingshott, and H. J. Griesser, “Hybrid biomaterials: surface-MALDI mass spectrometry analysis of covalent binding versus physisorption of proteins,” Colloids and Surfaces B: Biointerfaces, vol. 17, no. 1, pp. 23–35, 2000. View at Publisher · View at Google Scholar · View at Scopus
  155. L. Zhao, P. K. Chu, Y. Zhang, and Z. Wu, “Antibacterial coatings on titanium implants,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 91B, no. 1, pp. 470–480, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  156. Y. Liu, R. O. Huse, K. De Groot, D. Buser, and E. B. Hunziker, “Delivery mode and efficacy of BMP-2 in association with implants,” Journal of Dental Research, vol. 86, no. 1, pp. 84–89, 2007. View at Publisher · View at Google Scholar · View at Scopus
  157. C. Yao, V. Perla, J. L. McKenzie, E. B. Slamovich, and T. J. Webster, “Anodized Ti and Ti6Al4V possessing nanometer surface features enhances osteoblast adhesion,” Journal of Biomedical Nanotechnology, vol. 1, no. 1, pp. 68–73, 2005. View at Publisher · View at Google Scholar
  158. A. Härtl, E. Schmich, J. A. Garrido et al., “Protein-modified nanocrystalline diamond thin films for biosensor applications,” Nature Materials, vol. 3, no. 10, pp. 736–742, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  159. B. Elmengaard, J. E. Bechtold, and K. Søballe, “In vivo effects of RGD-coated titanium implants inserted in two bone-gap models,” Journal of Biomedical Materials Research Part A, vol. 75A, no. 2, pp. 249–255, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  160. C. D. Reyes, T. A. Petrie, K. L. Burns, Z. Schwartz, and A. J. García, “Biomolecular surface coating to enhance orthopaedic tissue healing and integration,” Biomaterials, vol. 28, no. 21, pp. 3228–3235, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  161. E. Ruoslahti, “RGD and other recognition sequences for integrins,” Annual Review of Cell and Developmental Biology, vol. 12, pp. 697–715, 1996. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  162. K. C. Dee, D. C. Rueger, T. T. Andersen, and R. Bizios, “Conditions which promote mineralization at the bone—implant interface: a model in vitro study,” Biomaterials, vol. 17, no. 2, pp. 209–215, 1996. View at Publisher · View at Google Scholar · View at Scopus
  163. Z. Shi, K. G. Neoh, E. T. Kang, K. P. Chye, and W. Wang, “Surface functionalization of titanium with carboxymethyl chitosan and immobilized bone morphogenetic protein-2 for enhanced osseointegration,” Biomacromolecules, vol. 10, no. 6, pp. 1603–1611, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  164. A. Nanci, J. D. Wuest, L. Peru et al., “Chemical modification of titanium surfaces for covalent attachment of biological molecules,” Journal of Biomedical Materials Research, vol. 40, no. 2, pp. 324–335, 1998. View at Publisher · View at Google Scholar · View at Scopus
  165. D. C. Turner, C. Chang, K. Fang, S. L. Brandow, and D. B. Murphy, “Selective adhesion of functional microtubules to patterned silane surfaces,” Biophysical Journal, vol. 69, no. 6, pp. 2782–2789, 1995. View at Publisher · View at Google Scholar · View at Scopus
  166. S. J. Xiao, M. Textor, N. D. Spencer, M. Wieland, B. Keller, and H. Sigrist, “Immobilization of the cell-adhesive peptide Arg-Gly-Asp-Cys (RGDC) on titanium surfaces by covalent chemical attachment,” Journal of Materials Science: Materials in Medicine, vol. 8, no. 12, pp. 867–872, 1997. View at Publisher · View at Google Scholar · View at Scopus
  167. J. D. Heckman, W. Ehler, B. P. Brooks et al., “Bone morphogenetic protein but not transforming growth factor-β enhances bone formation in canine diaphyseal nonunions implanted with a biodegradable composite polymer,” The Journal of Bone & Joint Surgery A, vol. 81, no. 12, pp. 1717–1729, 1999. View at Google Scholar · View at Scopus
  168. Y. Suzuki, M. Tanihara, K. Suzuki, A. Saitou, W. Sufan, and Y. Nishimura, “Alginate hydrogel linked with synthetic oligopeptide derived from BMP-2 allows ectopic osteoinduction in vivo,” Journal of Biomedical Materials Research, vol. 50, no. 3, pp. 405–409, 2000. View at Publisher · View at Google Scholar
  169. E. de Giglio, L. de Gennaro, L. Sabbatini, and G. Zambonin, “Analytical characterization of collagen- and/or hydroxyapatite-modified polypyrrole films electrosynthesized on Ti-substrates for the development of new bioactive surfaces,” Journal of Biomaterials Science, Polymer Edition, vol. 12, no. 1, pp. 63–76, 2001. View at Publisher · View at Google Scholar · View at Scopus
  170. M. Stigter, K. de Groot, and P. Layrolle, “Incorporation of tobramycin into biomimetic hydroxyapatite coating on titanium,” Biomaterials, vol. 23, no. 20, pp. 4143–4153, 2002. View at Publisher · View at Google Scholar · View at Scopus
  171. M. Stigter, J. Bezemer, K. De Groot, and P. Layrolle, “Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy,” Journal of Controlled Release, vol. 99, no. 1, pp. 127–137, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  172. Y. Liu, L. Enggist, A. F. Kuffer, D. Buser, and E. B. Hunziker, “The influence of BMP-2 and its mode of delivery on the osteoconductivity of implant surfaces during the early phase of osseointegration,” Biomaterials, vol. 28, no. 16, pp. 2677–2686, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  173. H. P. Jennissen, “Accelerated and improved osteointegration of implants biocoated with bone morphogenetic protein 2 (BMP-2),” Annals of the New York Academy of Sciences, vol. 961, pp. 139–142, 2002. View at Publisher · View at Google Scholar · View at Scopus
  174. Y. Liu, K. de Groot, and E. B. Hunziker, “BMP-2 liberated from biomimetic implant coatings induces and sustains direct ossification in an ectopic rat model,” Bone, vol. 36, no. 5, pp. 745–757, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  175. J.-W. Park, H.-K. Kim, Y.-J. Kim, J.-H. Jang, H. Song, and T. Hanawa, “Osteoblast response and osseointegration of a Ti-6Al-4V alloy implant incorporating strontium,” Acta Biomaterialia, vol. 6, no. 7, pp. 2843–2851, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  176. H. Kim, H. Murakami, B. Chehroudi, M. Textor, and D. M. Brunette, “Effects of surface topography on the connective tissue attachment to subcutaneous implants,” The International Journal of Oral & Maxillofacial Implants, vol. 21, no. 3, pp. 354–365, 2006. View at Google Scholar · View at Scopus