Table of Contents
Journal of Petroleum Engineering
Volume 2013 (2013), Article ID 203036, 5 pages
http://dx.doi.org/10.1155/2013/203036
Research Article

Dispersing of Petroleum Asphaltenes by Acidic Ionic Liquid and Determination by UV-Visible Spectroscopy

1Department of Chemistry, Faculty of Sciences, Shahid Chamran University, Ahvaz 61357-43337, Iran
2Department of Chemistry, Payame Noor University, P.O. BOX 19395-4697, Tehran, Iran

Received 31 December 2012; Revised 23 February 2013; Accepted 25 February 2013

Academic Editor: Jorge Ancheyta

Copyright © 2013 Eshagh Rezaee Nezhad et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Nikookar, G. R. Pazuki, M. R. Omidkhah, and L. Sahranavard, “Modification of a thermodynamic model and an equation of state for accurate calculation of asphaltene precipitation phase behavior,” Fuel, vol. 87, no. 1, pp. 85–91, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. A. K. Ghosh, “Spectrophotometric study of molecular complex formation of asphaltene with two isomeric chloranils,” Fuel, vol. 84, no. 2-3, pp. 153–157, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Buch, H. Groenzin, E. Buenrostro-Gonzalez, S. I. Andersen, C. Lira-Galeana, and O. C. Mullins, “Molecular size of asphaltene fractions obtained from residuum hydrotreatment,” Fuel, vol. 82, no. 9, pp. 1075–1084, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Groenzin and O. C. Mullins, “Molecular size and structure of asphaltenes from various sources,” Energy and Fuels, vol. 14, no. 3, pp. 677–684, 2000. View at Google Scholar · View at Scopus
  5. J. T. Miller, R. B. Fisher, P. Thiyagarajan, R. E. Winans, and J. E. Hunt, “Subfractionation and characterization of mayan asphaltene,” Energy and Fuels, vol. 12, no. 6, pp. 1290–1298, 1998. View at Google Scholar · View at Scopus
  6. T. Tavassoli, S. M. Mousavi, S. A. Shojaosadati, and H. Salehizadeh, “Asphaltene biodegradation using microorganisms isolated from oil samples,” Fuel, vol. 93, pp. 142–148, 2012. View at Google Scholar
  7. E. Hong and P. Watkinson, “A study of asphaltene solubility and precipitation,” Fuel, vol. 83, no. 14-15, pp. 1881–1887, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. T. J. Kaminski, H. S. Fogler, N. Wolf, P. Wattana, and A. Mairal, “Classification of asphaltenes via fractionation and the effect of heteroatom content on dissolution kinetics,” Energy and Fuels, vol. 14, no. 1, pp. 25–30, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Bouhadda, P. Florian, D. Bendedouch, T. Fergoug, and D. Bormann, “Determination of Algerian Hassi-Messaoud asphaltene aromaticity with different solid-state NMR sequences,” Fuel, vol. 89, no. 2, pp. 522–526, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Boukherissa, F. Mutelet, A. Modarressi, A. Dicko, D. Dafri, and M. Rogalski, “Ionic liquids as dispersants of petroleum asphaltenes,” Energy and Fuels, vol. 23, no. 5, pp. 2557–2564, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Mutelet, G. Ekulu, R. Solimando, and M. Rogalski, “Solubility parameters of crude oils and asphaltenes,” Energy and Fuels, vol. 18, no. 3, pp. 667–673, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. O. León, E. Rogel, A. Urbina, A. Andújar, and A. Lucas, “Study of the adsorption of alkyl benzene-derived amphiphiles on asphaltene particles,” Langmuir, vol. 15, no. 22, pp. 7653–7657, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. F. Hu and T. M. Guo, “Effect of the structures of ionic liquids and alkylbenzene-derived amphiphiles on the inhibition of asphaltene precipitation from CO2-injected reservoir oils,” Langmuir, vol. 21, no. 18, pp. 8168–8174, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. I. N. Evdokimov, N. Y. Eliseev, and B. R. Akhmetov, “Assembly of asphaltene molecular as studied by near-UV/visible spectroscopy aggregates, I. Structure of the absorbance spectrum,” Journal of Petroleum Science and Engineering, vol. 37, no. 3-4, pp. 135–143, 2003. View at Google Scholar
  15. I. N. Evdokimov, N. Y. Eliseev, and B. R. Akhmetov, “Assembly of asphaltene molecular as studied by near-UV/visible spectroscopy aggregates, II. Concentration dependencies of absorptivities,” Journal of Petroleum Science and Engineering, vol. 37, no. 3-4, pp. 145–152, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. I. N. Evdokimov, N. Y. Eliseev, and B. R. Akhmetov, “Initial stages of asphaltene aggregation in dilute crude oil solutions: studies of viscosity and NMR relaxation,” Fuel, vol. 82, no. 7, pp. 817–823, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Y. Sheu, “Petroleum asphaltene—properties, characterization, and issues,” Energy and Fuels, vol. 16, no. 1, pp. 74–82, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Idris and L. N. Okoro, “A review on the effects of asphaltene on petroleum processing,” European Chemical Bulletin, vol. 2, no. 6, pp. 393–396, 2013. View at Google Scholar