Table of Contents
Journal of Petroleum Engineering
Volume 2013 (2013), Article ID 476519, 7 pages
http://dx.doi.org/10.1155/2013/476519
Review Article

Electromagnetic Heating of Heavy Oil and Bitumen: A Review of Experimental Studies and Field Applications

1Harold Vance Department of Petroleum Engineering, Texas A&M University, 3116 TAMU-407 Richardson Building, College Station, TX, USA
2Gubkin Russian State University of Oil and Gas, 65 Leninsky Prospekt, Moscow, Russia

Received 11 December 2012; Revised 6 March 2013; Accepted 11 March 2013

Academic Editor: Jorge Ancheyta

Copyright © 2013 Albina Mukhametshina and Elena Martynova. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Chistyakov, F. Sayakhov, and G. Balabyan, “Experimental study of formations dielectric properties under the influence of high-frequency electromagnetic fields,” in University Investigations: Geology and Exploration, pp. 153–156, 1971. View at Google Scholar
  2. F. Sayakhov, “Particular properties of filtration and fluid flow under the influence of high-frequency electromagnetic field,” in Joint University Scientific Book, pp. 108–120, 1980. View at Google Scholar
  3. B. Savinikh, V. Dyakonov, and A. Usmanov, “The influence of alternating electric currents on the thermal conductivity of dielectric fluids,” Journal of Engineering Physics and Thermophysics, no. 2, pp. 269–276, 1981 (Russian). View at Google Scholar
  4. A. Davletbaev and L. Kovaleva, “Combined RF EM/solvent treatment technique: heavy/extra-heavy oil production model case study,” in Proceedings of the 10th Annual International Conference Petroleum Phase Behavior and Fouling, Rio de Janeiro, Brazil, 2009.
  5. M. A. Fatikhov, “Experimental study of bitumen initial pressure gradient in the electromagnetic field,” University Investigations: Oil and Gas, no. 5, pp. 93–94, 1990 (Russian). View at Google Scholar
  6. L. Kovaleva, A. Davletbaev, T. Babadagli, and Z. Stepanova, “Effects of electrical and radio-frequency electromagnetic heating on the mass-transfer process during miscible injection for heavy-oil recovery,” Energy and Fuels, vol. 25, no. 2, pp. 482–486, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Malofeev, O. Mirsaetov, and I. Cholovskaya, “Injection of hot fluids for enhanced oil recovery and well stimulation,” in Regular and Chaotic Dynamics, Institute of Computer Science, RussiaIgevsk, Russia, 2008. View at Google Scholar
  8. F. Sayakhov, R. Bulgakov, V. Dyblenko, B. Deshura, and M. Bykov, “About HF heating of bitumen reservoirs,” Petroleum Engineering, no. 1, pp. 5–8, 1980 (Russian). View at Google Scholar
  9. F. L. Sayakhov, L. A. Kovaleva, M. A. Fatikhov, and G. A. Khalikov, “Method of thermal effect on oil-bearing formation,” SU Patent 1723314, 1992. View at Google Scholar
  10. F. Sayakhov, I. Habibullin, M. Yagudin, and M. Fatyhov, “Technique and technology of thermal well stimulation on the basis electro-thermo-chemical and electromagnetic effects,” University Investigations: Oil and Gas, no. 2, pp. 33–42, 1992 (Russian). View at Google Scholar
  11. J. E. Bridges, J. J. Krstansky, A. Taflove, and G. C. Sresty, “The IITRI in situ RF fuel recovery process,” Journal of Microwave Power, vol. 18, no. 1, pp. 3–14, 1983. View at Google Scholar · View at Scopus
  12. J. Bridges, “Method for in-situ heat processing of hydrocarbonaceous formation,” US Patent 4140180, 1979. View at Google Scholar
  13. A. D. Haagensen, “Oil well microwave tools,” Patent USA 3170119, 1965. View at Google Scholar
  14. H. W. Ritchey, “Radiation Heating System, US Patent,” Tech. Rep. 2757738, 1956. View at Google Scholar
  15. G. C. Sresty, R. H. Snow, and J. E. Bridges, “Recovery of liquid hydrocarbons from oil shale by electromagnetic heating in-situ,” US Patent 4485869, 1984. View at Google Scholar
  16. R. Wilson, “Well production method using microwave heating,” US Patent 4485868, 1987. View at Google Scholar
  17. R. S. Kasevich, S. L. Price, D. L. Faust, and M. F. Fontaine, “Pilot testing of a radio frequency heating system for enhanced oil recovery from diatomaceous earth,” in Proceedings of the SPE Annual Technical Conference & Exhibition, pp. 105–113, New Orleans, La, USA, September 1994. View at Scopus
  18. H. L. Spencer, “Electromagnetic Oil Recovery, Ltd,” Calgary, Canada, 1987.
  19. F. E. Vermeulen and F. S. Chute, “Electromagnetic techniques in the in-situ recovery of heavy oils,” Journal of Microwave Power, vol. 18, no. 1, pp. 15–29, 1983. View at Google Scholar · View at Scopus
  20. S. Rassenfoss, “Seeking more oil, fewer emissions,” Journal of Petroleum Technology, vol. 64, no. 9, pp. 34–38, 2012. View at Google Scholar
  21. B. C. W. Mcgee and F. E. Vermeulen, “The mechanisms of electrical heating for the recovery of bitumen from oil sands,” Journal of Canadian Petroleum Technology, vol. 46, no. 1, pp. 28–34, 2007. View at Google Scholar · View at Scopus
  22. R. J. Davidson, “Electromagnetic stimulation of Lloydminster heavy oil reservoirs: field test results,” Journal of Canadian Petroleum Technology, vol. 34, no. 4, pp. 15–24, 1995. View at Google Scholar
  23. A. Chakma and K. N. Jha, “Heavy-oil recovery from thin pay zones by electromagnetic heating, paper SPE 24817,” in Proceedings of the Annual Technical Conference and Exhibition, Society of Petroleum Engineers, Washington, DC, USA, October 1992. View at Publisher · View at Google Scholar
  24. B. Hascakir, C. Acar, Schlumberger, B. Demiral, and S. Akin, “Microwave assisted gravity drainage of heavy oils,” in Proceedings of the International Petroleum Technology Conference (IPTC '08), pp. 1908–1916, Kuala Lumpur, Malaysia, December 2008. View at Scopus
  25. B. Hascakir, T. Babadagli, and S. Akin, “Experimental and numerical modeling of heavy-oil recovery by electrical heating, paper SPE 117669,” in Proceedings of the International Thermal Operations and Heavy Oil Symposium (ITOHOS '08), p. 14, Society of Petroleum Engineers, Alberta, Canada, October 2008. View at Publisher · View at Google Scholar
  26. M. Koolman, N. Huber, D. Diehl, and B. Wacker, “Electromagnetic heating method to improve steam assisted gravity drainage, paper 1177481,” in Proceedings of the International Thermal Operations and Heavy Oil Symposium (ITOHOS '08), pp. 327–338, Society of Petroleum Engineers, Alberta, Canada, October 2008. View at Scopus
  27. K. A. Jha, N. Joshi, and A. Singh, “Applicability and assessment of micro-wave assisted gravity drainage (MWAGD) applications in Mehsana heavy oil field, paper SPE 14591,” in Proceedings of the SPE Heavy Oil Conference and Exhibition, Society of Petroleum Engineers, Kuwait City, Kuwait, December 2011. View at Publisher · View at Google Scholar
  28. J. R. Kershaw, G. Barrass, and D. Gray, “Chemical nature of coal hydrogenation oils part I. The effect of catalysts,” Fuel Processing Technology, vol. 3, no. 2, pp. 115–129, 1980. View at Google Scholar · View at Scopus
  29. S. Odenbach, “Ferrofluids—magnetically controlled suspensions,” Colloids and Surfaces A, vol. 217, no. 1–3, pp. 171–178, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Ovalles, A. Fonseca, A. Lara et al., “Opportunities of downhole dielectric heating in Venezuela: three case studies involving medium, heavy and extra-heavy crude oil reservoirs, paper SPE 78980,” in Proceedings of the International Thermal Operations and Heavy Oil Symposium and International Horizontal Well Technology Conference, Alberta, Canada, November 2002. View at Publisher · View at Google Scholar
  31. M. A. Ayrapetyan, “About oil fields development prospects by high-frequency currents electrical fields,” in Materials of KSSR Institute of Oil, pp. 38–52, 1958. View at Google Scholar
  32. M. A. Ayrapetyan, V. S. Velikanov, and E. Ya. Magnikov, “Reservoir high-frequency heating investigations,” in Materials of KSSR Institute of Oil, pp. 113–124, 1959. View at Google Scholar
  33. M. A. Carrizales, L. W. Lake, and R. T. Johns, “Production improvement of heavy-oil recovery by using electromagnetic heating, paper SPE 115723,” in Proceedings of the SPE Annual Technical Conference and Exhibition (ATCE '08), Denver, Colo, USA, September 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. A. D. Hiebert, F. E. Vermeulen, F. S. Chute, and C. E. Capjack, “Numerical simulation results for the electrical heating of Athabasca oil-sand formations,” SPE Reservoir Engineering, vol. 1, no. 1, pp. 76–84, 1986. View at Google Scholar · View at Scopus
  35. J. Burge, P. Surio, and M. Combarnu, Thermal Methods of Enhanced Oil Recovery, Nedra Publishing, Moscow, Russia, 1988.