Table of Contents
Journal of Petroleum Engineering
Volume 2013, Article ID 479827, 7 pages
Research Article

Simulation of Formation Damage after Long-Term Water Flooding

1RIPED, PetroChina, Beijing 100083, China
2Exploration & Production Company, PetroChina, Beijing 100083, China

Received 30 January 2013; Revised 18 April 2013; Accepted 18 April 2013

Academic Editor: Alireza Bahadori

Copyright © 2013 Liu He et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Water flooding is a commonly used technology for enhancing oil recovery. Its main mechanism is to maintain higher pressure to sweep oil towards production wells. However, the strong water flooding will cause higher compression pressure around the injection wellbore. This high pressure in the reservoir causes stress redistribution and higher stress near the wellbore which induces material damage and permeability change. We developed a fluid-solid coupling finite element model to simulate and quantitatively analyze the pressure evolution in the reservoir as well as damage and permeability change in the formation during long-term water flooding process. The obtained results offer theoretical understanding of the benefits (pore pressure increase in the simulation domain), rock damage, permeability change of long-term water flooding, and the insights of how to detect and prevent wellbore failure and collapse due to water flooding.