Table of Contents
Journal of Petroleum Engineering
Volume 2013, Article ID 709248, 11 pages
http://dx.doi.org/10.1155/2013/709248
Research Article

Modeling of Partially Hydrolyzed Polyacrylamide-Hexamine-Hydroquinone Gel System Used for Profile Modification Jobs in the Oil Field

Department of Petroleum Engineering, Indian School of Mines, Dhanbad 826004, India

Received 25 September 2012; Accepted 11 November 2012

Academic Editor: Serhat Akin

Copyright © 2013 Upendra Singh Yadav and Vikas Mahto. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Liu, B. Bai, and Y. Wang, “Applied technologies and prospects of conformance control treatments in China,” Oil and Gas Science and Technology, vol. 65, no. 6, pp. 859–878, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Jain, C. S. McCool, D. W. Green, G. P. Willhite, and M. J. Michnick, “Reaction kinetics of the uptake of chromium (III) acetate by polyacrylamide,” Society of Petroleum Engineers Journal, vol. 10, no. 3, pp. 247–255, 2004. View at Publisher · View at Google Scholar
  3. C. A. Grattoni, H. H. Al-Sharji, C. Yang, A. H. Muggeridge, and R. W. Zimmerman, “Rheology and permeability of crosslinked polyacrylamide gel,” Journal of Colloid and Interface Science, vol. 240, no. 2, pp. 601–607, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Moradi-Araghi, “A review of thermally stable gels for fluid diversion in petroleum production,” Journal of Petroleum Science and Engineering, vol. 26, no. 1–4, pp. 1–10, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Stavland and H. C. Jonsbraten, “New insight into aluminum citrate/polyacrylamide gels for fluid control,” in Proceedings of the SPE/DOE 10th Symposium on Improved Oil Recovery, Paper SPE/DOE 35381, pp. 347–356, Tulsa, Okla, USA, April 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. S. L. Bryant, G. P. Borghi, M. Bartosek, and T. P. Lockhart, “Experimental investigation on the injectivity of phenol-formaldehyde/polymer gelants,” in Proceedings of the SPE International Symposium on Oilfield Chemistry, Paper SPE 37244, pp. 335–343, Houston, Tex, USA, February 1997. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Jia, W. F. Pu, J. Z. Zhao, and R. Liao, “Experimental investigation of the novel phenol-formaldehyde cross-linking HPAM gel system: based on the secondary cross-linking method of organic cross-linkers and its gelation performance study after flowing through porous media,” Energy and Fuels, vol. 25, no. 2, pp. 727–736, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Jia, W. F. Pu, J. Z. Zhao, and F. Y. Jin, “Research on the gelation performance of low toxic PEI cross-linking PHPAM gel systems as water shutoff agents in low temperature reservoirs,” Industrial and Engineering Chemistry Research, vol. 49, no. 20, pp. 9618–9624, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. H. T. Dovan, R. D. Hutchins, and B. B. Sandiford, “Delaying gelation of aqueous polymers at elevated temperatures using novel organic crosslinkers,” in Proceedings of the SPE International Symposium on Oilfield Chemistry, Paper SPE 37246, pp. 361–371, Houston, Tex, USA, February 1997. View at Scopus
  10. R. D. Hutchins, H. T. Dovan, and B. B. Sandiford, “Field applications of high temperature organic gels for water control,” in Proceedings of the 10th Symposium of Improved Oil Recovery, Paper SPE/DOE 35444, Tulsa, Okla, USA, April 1996.
  11. L. Eoff, D. Dalrymple, and D. Everett, “Global field results of a polymeric gel system in conformance applications,” in Proceedings of SPE Russian Oil and Gas Technical Conference and Exhibition, Paper SPE 101822, pp. 280–285, Moscow, Russia, October 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Vasquez, E. D. Dalrymple, L. Eoff, B. R. Reddy, and F. Civan, “Development and evaluation of high-temperature conformance polymer systems,” in Proceedings of the SPE International Symposium on Oilfield Chemistry, Paper SPE 93156, Houston, Tex, USA, February 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. G. A. Al-Muntasheri, H. A. Nasr-El-Din, and I. A. Hussein, “A rheological investigation of a high temperature organic gel used for water shut-off treatments,” Journal of Petroleum Science and Engineering, vol. 59, no. 1-2, pp. 73–83, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. G. A. Al-Muntasheri, “A study of polyacrylamide-based gels crosslinked with polyethyleneimine,” in Proceedings of the SPE International Symposium on Oilfield Chemistry, Paper SPE 105925, Houston, Tex, USA, February 2007. View at Publisher · View at Google Scholar
  15. S. D. Jordan, D. W. Green, E. R. Terry, and G. P. Willhite, “The effect of temperature on gelation time for polyacrylamide/chromium (III) systems,” Society of Petroleum Engineers Journal, vol. 22, no. 4, pp. 463–471, 1982. View at Publisher · View at Google Scholar
  16. G. A. Al-Muntasheri, H. A. Nasr-El-Din, and P. L. J. Zitha, “Gelation kinetic and performance evaluation of an organically crosslinked gel at high temperature and pressure,” in Proceedings of the 1st International Oil Conference and Exhibition, Paper SPE 104071, September 2006, Cancun, Mexico. View at Publisher · View at Google Scholar
  17. M. Simjoo, M. Vafaie Sefti, A. Dadvand Koohi, R. Hasheminasab, and V. Sajadian, “Polyacrylamide gel polymer as water shut-off system: preparation and investigation of physical and chemical properties in one of the iranian oil reservoirs conditions,” Iranian Journal of Chemistry and Chemical Engineering, vol. 26, no. 4, pp. 99–108, 2007. View at Google Scholar · View at Scopus
  18. F. Civan, J. Vasquez, D. Dalrymple, L. Eoff, and B. R. Reddy, “Laboratory and theoretical evaluation of gelation time data for water-based polymer systems for water control,” Petroleum Science and Technology, vol. 25, no. 3, pp. 353–371, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. O. Levenspiel, Chemical Reaction Engineering, John Wiley & Sons, New York, NY, USA, 3rd edition, 1999.