Table of Contents Author Guidelines Submit a Manuscript
Journal of Pharmaceutics
Volume 2013, Article ID 629593, 9 pages
http://dx.doi.org/10.1155/2013/629593
Research Article

In Vitro and In Vivo Evaluation of Oxatomide β-Cyclodextrin Inclusion Complex

1Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11790, Egypt
2Department of Pharmaceutics, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt

Received 8 October 2012; Revised 3 November 2012; Accepted 5 November 2012

Academic Editor: Anna Wesolowska

Copyright © 2013 Fahima M. Hashem et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Gatti, A. Coutts, D. Francis, and M. W. Greaves, “Oxatomide: in vitro assessment of antagonistic activity, and effects on histamine release and enzymatic histamine degradation in skin,” British Journal of Dermatology, vol. 103, no. 6, pp. 671–677, 1980. View at Google Scholar · View at Scopus
  2. D. M. Richards, R. N. Brogden, and R. C. Heel, “Oxatomide: a review of its pharmacodynamic properties and therapeutic efficacy,” Drugs, vol. 27, no. 3, pp. 210–231, 1984. View at Google Scholar · View at Scopus
  3. S. R. Vippagunta, Z. Wang, S. Hornung, and S. L. Krill, “Factors affecting the formation of eutectic solid dispersions and their dissolution behavior,” Journal of Pharmaceutical Sciences, vol. 96, no. 2, pp. 294–304, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Ohara, S. Kitamura, T. Kitagawa, and K. Terada, “Dissolution mechanism of poorly water-soluble drug from extended release solid dispersion system with ethylcellulose and hydroxypropylmethylcellulose,” International Journal of Pharmaceutics, vol. 302, no. 1-2, pp. 95–102, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, “Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings,” Advanced Drug Delivery Reviews, vol. 46, no. 1–3, pp. 3–26, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Tanaka, K. Imai, K. Okimoto et al., “Development of novel sustained-release system, disintegration-controlled matrix tablet (DCMT) with solid dispersion granules of nilvadipine (II): in vivo evaluation,” Journal of Controlled Release, vol. 112, no. 1, pp. 51–56, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Streubel, J. Siepmann, and R. Bodmeier, “Drug delivery to the upper small intestine window using gastroretentive technologies,” Current Opinion in Pharmacology, vol. 6, no. 5, pp. 501–508, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Leuner and J. Dressman, “Improving drug solubility for oral delivery using solid dispersions,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 50, no. 1, pp. 47–60, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Prabhu, M. Ortega, and C. Ma, “Novel lipid-based formulations enhancing the in vitro dissolution and permeability characteristics of a poorly water-soluble model drug, piroxicam,” International Journal of Pharmaceutics, vol. 301, no. 1-2, pp. 209–216, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. R. L. Carrier, L. A. Miller, and I. Ahmed, “The utility of cyclodextrins for enhancing oral bioavailability,” Journal of Controlled Release, vol. 123, no. 2, pp. 78–99, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Loftsson and M. E. Brewster, “Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization,” Journal of Pharmaceutical Sciences, vol. 85, no. 10, pp. 1017–1025, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Giordano, A. Gazzaniga, G. P. Bettinetti, and A. La Manna, “The influence of water content on the binding capacity of β-cyclodextrin,” International Journal of Pharmaceutics, vol. 62, no. 2-3, pp. 153–156, 1990. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Tasić, K. Pintye-Hódi, and P. Sabo-Revesz, “Evaluation of compression behavior of paracetamol tablets produced with β-cyclodextrin dispersions. Part II: energy distribution study of tablets,” Drug Development and Industrial Pharmacy, vol. 23, no. 12, pp. 1153–1158, 1997. View at Google Scholar · View at Scopus
  14. J. R. Moyano, J. M. Ginés, M. J. Arias, and A. M. Rabasco, “Study of the dissolution characteristics of oxazepam via complexation with β-cyclodextrin,” International Journal of Pharmaceutics, vol. 114, no. 1, pp. 95–102, 1995. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Ribeiro and F. Veiga, “Complexation of vinpocetine with cyclodextrins in the presence or absence of polymers. Binary and ternary complexes preparation and characterization,” Journal of Inclusion Phenomena, vol. 44, no. 1–4, pp. 251–256, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. X. She, L. Wu, H. Wei, W. Liu, and Y. Chen, “Determination of oxatomide in human plasma by high-performance liquid chromatography-electrospray ionization mass spectrometry,” Biomedical Chromatography, vol. 22, no. 7, pp. 746–752, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Gilbaldi and D. Perrier, Pharmacokinetics, Marcel Dekker, New York, NY, USA, 2nd edition, 1982.
  18. T. Higuchi and K. A. Connors, “Phase-solubility techniques,” Advances in Analytical Chemistry and Instrumentation, vol. 4, pp. 212–217, 1965. View at Google Scholar
  19. H. M. Cabral Marques, J. Hadgraft, and I. W. Kellaway, “Studies of cyclodextrin inclusion complexes. I. The salbutamol-cyclodextrin complex as studied by phase solubility and DSC,” International Journal of Pharmaceutics, vol. 63, no. 3, pp. 259–266, 1990. View at Publisher · View at Google Scholar · View at Scopus
  20. K. H. Kim, M. J. Frank, and N. L. Henderson, “Application of differential scanning calorimetry to the study of solid drug dispersions,” Journal of Pharmaceutical Sciences, vol. 74, no. 3, pp. 283–289, 1985. View at Google Scholar · View at Scopus
  21. M. Kurozumi, N. Nambu, and T. Nagai, “Inclusion compounds of non steroidal antiinflammatory and other slightly water soluble drugs with α and β cyclodextrins in powdered form,” Chemical and Pharmaceutical Bulletin, vol. 23, no. 12, pp. 3062–3068, 1975. View at Google Scholar · View at Scopus
  22. K. A. Khan, “The concept of dissolution efficiency,” Journal of Pharmacy and Pharmacology, vol. 27, no. 1, pp. 48–49, 1975. View at Google Scholar · View at Scopus
  23. P. Mura, E. Adragna, A. M. Rabasco et al., “Effects of the host cavity size and the preparation method on the physicochemical properties of ibuproxam-cyclodextrin systems,” Drug Development and Industrial Pharmacy, vol. 25, no. 3, pp. 279–287, 1999. View at Publisher · View at Google Scholar · View at Scopus