Table of Contents Author Guidelines Submit a Manuscript
Journal of Pharmaceutics
Volume 2018, Article ID 3420204, 19 pages
https://doi.org/10.1155/2018/3420204
Review Article

Role of Nanotechnology in Cosmeceuticals: A Review of Recent Advances

Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh 201301, India

Correspondence should be addressed to Upendra Nagaich; moc.liamtoh@hciagan_ardnepu

Received 29 December 2017; Accepted 21 February 2018; Published 27 March 2018

Academic Editor: Xiqun Jiang

Copyright © 2018 Shreya Kaul et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Logothetidis, “Nanostructured materials and their applications,” NanoScience and Technology, vol. 12, p. 220, 2012. View at Google Scholar
  2. A. D. Maynard, Nanotechnology: A Research Strategy for Addressing Risk. PEN, 2006.
  3. M. S. Bangale, S. S. Mitkare, S. G. Gattani, and D. M. Sakarkar, “Recent nanotechnological aspects in cosmetics and dermatological preparations,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 4, no. 2, pp. 88–97, 2012. View at Google Scholar · View at Scopus
  4. A. Gautam and R. Singh Vijayaraghavan, “Dermal exposure of nanoparticles: an understanding,” Journal of Cell and Tissue Research, vol. 11, no. 1, pp. 2703–2708, 2011. View at Google Scholar
  5. R. Sharma, “Cosmeceuticals and herbal drugs: practical uses,” International Journal of Pharmaceutical Sciences and Research, vol. 3, no. 1, pp. 59–65, 2012. View at Google Scholar
  6. H. Dureja, D. Kaushik, M. Gupta, V. Kumar, and V. Lather, “Cosmeceuticals: an emerging concept,” Indian Journal of Pharmacology, vol. 37, no. 3, pp. 155–159, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Mukta and F. Adam, “Cosmeceuticals in day-to-day clinical practice,” Journal of Drugs in Dermatology, vol. 9, pp. 62–69, 2010. View at Google Scholar
  8. K. Srinivas, “The current role of nanomaterials in cosmetics,” Journal of Chemical and Pharmaceutical Research, vol. 8, no. 5, pp. 906–914, 2016. View at Google Scholar
  9. F. S. Brandt, A. Cazzaniga, and M. Hann, “Cosmeceuticals: current trends and market analysis,” Seminars in Cutaneous Medicine and Surgery, vol. 30, no. 3, pp. 141–143, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. “Nano-materials: prevalence in personal care products,” https://www.ewg.org/skindeep/2007/08/25/hundreds-of-personal-care-products-contain-poorly-studied-nano-materials/#.Wka44VWWbIU.
  11. L. Mu and R. L. Sprando, “Application of nanotechnology in cosmetics,” Pharmaceutical Research, vol. 27, no. 8, pp. 1746–1749, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. G. J. Nohynek, J. Lademann, C. Ribaud, and M. S. Roberts, “Grey Goo on the skin? Nanotechnology, cosmetic and sunscreen safety,” Critical Reviews in Toxicology, vol. 37, no. 3, pp. 251–277, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. J. R. Antonio, C. R. Antônio, I. L. Soares-Cardeal, J. M. A. Ballavenuto, and J. R. Oliveira, “Nanotechnology in dermatology,” Anais Brasileiros de Dermatologia, vol. 89, no. 1, pp. 126–136, 2014. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Gref, R. Gref, Y. Minamitake et al., “Biodegradable long-circulating polymeric nanospheres,” Science, vol. 263, no. 5153, pp. 1600–1603, 1994. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Dahiya and J. F. Romano, “Cosmeceuticals: a review of their use for aging and photoaged skin,” Cosmetic Dermatology, vol. 19, no. 7, pp. 479–484, 2006. View at Google Scholar · View at Scopus
  16. E. Starzyk, A. Frydrych, and A. Solyga, “Nanotechnology: does it have a future in cosmetics?” SÖFW Journal, vol. 134, no. 6, pp. 42–52, 2008. View at Google Scholar
  17. S. Mukta and F. Adam, “Cosmeceuticals in day-to-day clinical practice,” Journal of Drugs in Dermatology, vol. 9, pp. 62–66, 2010. View at Google Scholar
  18. A. Nasir, “Nanotechnology and dermatology: Part II-risks of nanotechnology,” Clinics in Dermatology, vol. 28, no. 5, pp. 581–588, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Fox, Cosmetic and Pharmaceutical Vehicles: Skin Care, Hair Care, Makeup and Sunscreens, vol. 113, Cosmetics & Toiletries, 1998.
  20. P. Tripura and H. Anushree, “Anushree novel delivery systems: current trend in cosmetic industry,” European Journal of Pharmaceutical and Medical Research, vol. 4, no. 8, pp. 617–627, 2017. View at Google Scholar
  21. N. Arora, S. Agarwal, and R. S. R. Murthy, “Latest technology advances in cosmaceuticals,” International Journal of Pharmaceutical Sciences and Drug Research, vol. 4, no. 3, pp. 168–182, 2012. View at Google Scholar
  22. M. J. Hope and C. N. Kitson, “Liposomes: a perspective for dermatologists,” Dermatologic Clinics, vol. 11, no. 1, pp. 143–154, 1993. View at Google Scholar · View at Scopus
  23. G. Bhupendra, K. Prajapati Niklesh, M. Manan, and P. P. Rakesh, “Topical Liposomes in Drug Delivery: A Review,” International journal of pavement research and technology, vol. 4, no. 1, pp. 39–44, 2012. View at Google Scholar
  24. A. Tasleem, N. Nuzhatun, S. A. Syed, S. Sheikh, M. Raheel, and R. S. Muzafar, “herapeutic and Diagnostic Applications of Nanotechnology in Dermatology and Cosmetics Nanomedicine & Biotherapeutic,” Discovery Journal of Nanomedicine & Biotherapeutic Discovery, vol. 5, no. 3, pp. 1–10, 2015. View at Google Scholar
  25. K. Egbaria and N. Weiner, “Liposomes as a topical drug delivery system,” Advanced Drug Delivery Reviews, vol. 5, no. 3, pp. 287–300, 1990. View at Publisher · View at Google Scholar · View at Scopus
  26. M. M. Rieger, Skin Lipids and Their Importance to Cosmetic Science, vol. 102, Cosmetics Toiletries, 1987.
  27. G. Blume, E. Teichmüller, and E. Teichmüller, “New evidence of the penetration of actives by liposomal carrier system,” Cosmetics & Toiletries Manufacture Worldwide, pp. 135–139, 1997. View at Google Scholar
  28. M. Ghyczy, H.-P. Nissen, and H. Biltz, “The treatment of acne vulgaris by phosphatidylcholine from soybeans, with a high content of linoleic acid,” Journal of Applied Cosmetology, vol. 14, no. 4, pp. 137–145, 1996. View at Google Scholar · View at Scopus
  29. Flexible Liposomes for topical Applications in Cosmetics Dr. Gabriele Blume.
  30. D. D. Lasic, “Novel applications of liposomes,” Trends in Biotechnology, vol. 16, no. 7, pp. 307–321, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Akbarzadeh, R. Rezaei-Sadabady, S. Davaran et al., “Liposome: classification, preparation, and applications,” Nanoscale Research Letters, vol. 8, article 102, 2013. View at Publisher · View at Google Scholar · View at Scopus
  32. Dermosome, https://www.ulprospector.com/en/la/PersonalCare/Detail/1832/44044/Dermosome.
  33. Decorte, https://www.decortecosmetics.com/skincare/liposome.
  34. K. Karim, A. Mandal, N. Biswas et al., “Niosome: a future of targeted drug delivery systems,” Journal of Advanced Pharmaceutical Technology & Research, vol. 1, no. 4, pp. 374–380, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Duarah, K. Pujari, R. D. Durai, and V. H. B. Narayanan, “Nanotechnology-based cosmeceuticals: A review,” International Journal of Applied Pharmaceutics, vol. 8, no. 1, pp. 8–12, 2016. View at Google Scholar · View at Scopus
  36. A. Gandhi, “Suma oomen sen, abhijit paul. current trends in niosome as vesicular drug delivery system,” Asian Journal of Pharmacy and Life Science, vol. 2, no. 2, pp. 339–352, 2012. View at Google Scholar
  37. K. M. Karim et al., “A future of targeted drug delivery systems,” Journal of Advanced Pharmaceutical Technology & Research, vol. 1, no. 4, pp. 374–380, 2010. View at Google Scholar
  38. V. Pola Chandu, A. Arunachalam, S. Jeganath, K. Yamini, and K. Tharangini, “Niosomes: a novel drug delivery system,” International Journal of Novel Trends in Pharmaceutical Sciences, vol. 2, no. 1, pp. 2277–2782, 2012. View at Google Scholar
  39. G. P. Kumar and P. Rajeshwarrao, “Nonionic surfactant vesicular systems for effective drug delivery—an overview,” Acta Pharmaceutica Sinica B (APSB), vol. 1, no. 4, pp. 208–219, 2011. View at Publisher · View at Google Scholar
  40. S. Biswa, P. N. Murthy, J. Sahu, and F. Amir, “Vesicles of non-ionic surfactants (niosomes) and drug delivery potential,” International journal of pharmaceutical sciences and nanotechnology, vol. 1, no. 1, pp. 1–8, 2008. View at Google Scholar
  41. P. Sudheer and K. Kaushik, “Review on Niosomes - a Novel Approach for Drug Targeting,” Journal of Pharmaceutical Research, vol. 14, no. 1, pp. 20–25, 2015. View at Publisher · View at Google Scholar
  42. P. Tripura Sundari and H. Anushree, “Novel delivery systems: current trend in cosmetic industry,” European Journal of Pharmaceutical and Medical Research, vol. 4, no. 8, pp. 617–627, 2017. View at Google Scholar
  43. A. Nasir, S. Harikumar, and K. Amanpreet, “Niosomes: an excellent tool for drug delivery,” International Journal of Research in Pharmacy and Chemistry, vol. 2, no. 2, pp. 479–487, 2012. View at Google Scholar
  44. Madhav N. V. S. and A. Saini, “Niosomes: a novel drug delivery system,” International Journal of Research in Pharmacy and Chemistry, vol. 1, no. 3, pp. 498–511, 2011. View at Google Scholar
  45. M. Gandhi, P. Sanket, S. Mahendra et al., “Niosomes: Novel Drug Delivery System,” International Journal of Pure & Applied Bioscience, vol. 2, no. 2, pp. 267–274, 2014. View at Google Scholar
  46. S. Navneet, M. Pooja, and V. Vinay, “Nanoparticle vesicular systems: A versatile tool for drug delivery,” Journal of Chemical and Pharmaceutical Research, vol. 2, no. 2, pp. 496–509, 2010. View at Google Scholar
  47. V. Thakur, S. Arora, B. Prashar, and P. Vishal, “Niosomes and liposomes-vesicular approach towards transdermal drug delivery,” International Journal of Pharmaceutical and Chemical Sciences, vol. 1, no. 3, pp. 981–993, 2012. View at Google Scholar
  48. A. Lohani, A. Verma, H. Joshi, N. Yadav, and N. Karki, “Nanotechnology-based cosmeceuticals,” ISRN Dermatology, vol. 2014, Article ID 843687, 14 pages, 2014. View at Publisher · View at Google Scholar
  49. A. Gupta, S. K. Prajapati, M. Balamurugan, M. Singh, and D. Bhatia, “Design and Development of a Proniosomal Transdermal Drug Delivery System for Captopril,” Tropical Journal of Pharmaceutical Research, vol. 6, no. 2, 2007. View at Publisher · View at Google Scholar
  50. D. Puri, A. Bhandari, P. Sharma, and D. Choudhary, “Lipid nanoparticles (SLN, NLC): A novel approach for cosmetic and dermal pharmaceutical,” Journal of Global Pharma Technology, vol. 2, no. 9, pp. 1–15, 2010. View at Google Scholar · View at Scopus
  51. M. S. Bangale, S. S. Mitkare, S. G. Gattani, and D. M. Sakarkar, “Recent nanotechnological aspects in cosmetics and dermatological preparations Dm2,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 4, no. 2, pp. 149–165, 2012. View at Google Scholar · View at Scopus
  52. H. H. Mohamed and N. G. Omaima, Rice Bran Solid Lipid Nanoparticles: Preparation and Characterization, vol. 1, Universal Research Publications, 2 edition, 2011.
  53. I. P. Kaur and R. Agrawal, “Nanotechnology: a new paradigm in cosmeceuticals.,” Recent patents on drug delivery & formulation, vol. 1, no. 2, pp. 171–182, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. A. zur Mühlen, C. Schwarz, and W. Mehnert, “Solid lipid nanoparticles (SLN) for controlled drug delivery—drug release and release mechanism,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 45, no. 2, pp. 149–155, 1998. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Pardeike, A. Hommoss, and R. H. Müller, “Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products,” International Journal of Pharmaceutics, vol. 366, no. 1-2, pp. 170–184, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. S. A. Arora and R. S. R. Murthy, “Latest Technology Advances in Cosmaceuticals,” International Journal of Pharmaceutical Sciences and Drug Research, vol. 4, no. 3, pp. 168–182, 2012. View at Google Scholar
  57. A. Patidar, S. T. Devendra, K. Peeyush, and V. Jhageshwar, “A review on novel lipid based nanocarriers,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 2, no. 4, pp. 234–257, 2010. View at Google Scholar
  58. C. Song and S. Liu, “A new healthy sunscreen system for human: Solid lipid nannoparticles as carrier for 3,4,5-trimethoxybenzoylchitin and the improvement by adding Vitamin E,” International Journal of Biological Macromolecules, vol. 36, no. 1-2, pp. 116–119, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. R. H. Müller, M. Radtke, and S. A. Wissing, “Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations,” Advanced Drug Delivery Reviews, vol. 54, supplement 1, pp. S131–S155, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. H. Hassan and N. Omaima, “Rice bran solid lipid nanoparticles: Preparation and characterization Mohamed,” International Journal of Research in Drug Delivery, vol. 1, no. 2, pp. 6–9, 2011. View at Google Scholar
  61. R. López-García and A. Ganem-Rondero, “Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): occlusive effect and penetration enhancement ability,” Journal of Cosmetics, Dermatological Sciences and Applications, vol. 5, no. 2, pp. 62–72, 2015. View at Publisher · View at Google Scholar
  62. E. B. Souto and R. H. Müller, “Cosmetic features and applications of lipid nanoparticles (SLN, NLC),” International Journal of Cosmetic Science, vol. 30, no. 3, pp. 157–165, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. P. Ekambaram, A. Abdul Hasan, Sathali., and K. Priyanka, “Solid lipid nanoparticles: a review,” Scientific Reviews & Chemical Communication, vol. 2, no. 1, pp. 80–102, 2012. View at Google Scholar
  64. J. Ramteke and Dhole., “Solid lipid nanoparticle: a review,” IOSR Journal of Pharmac, vol. 2, no. 6, pp. 34–44, 2012. View at Google Scholar
  65. E. Lasoń and J. Ogonowski, “Solid Lipid nanoparticles - Characteristics, application and obtaining,” Chemik, vol. 65, no. 10, pp. 960–967, 2011. View at Google Scholar · View at Scopus
  66. Herbal massage cream, http://herbalmassagecream.buy.peerflix.com/pz6cc822b-facial-lifting-cream-anti-aging-face-cream-sln-technology-3d-tightener.html.
  67. Chanel Fragrance, https://www.chanel.com/en_US/fragrance-beauty/allure-138049.
  68. K. Dilip, T. Surendra, K. N. Suresh, and K. Roohi, “Nanostructured lipid carrier (Nlc) a modern approach for topical delivery: a review,” World Journal of Pharmacy and Pharmaceutical Sciences, vol. 2, no. 3, pp. 921–938, 2013. View at Google Scholar
  69. A. Saupe, S. A. Wissing, A. Lenk, C. Schmidt, and R. H. Müller, “Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) - Structural investigations on two different carrier systems,” Bio-Medical Materials and Engineering, vol. 15, no. 5, pp. 393–402, 2005. View at Google Scholar · View at Scopus
  70. L. Shailesh, R. Patwekar Snehal, P. Ashwini, S. Manoj, and B. Arvind, “Nanostructured lipid carriers in stability improvement forcosmetic nanoparticles,” International Journal of Pharmacy & Pharmaceutical Resarch, vol. 6, no. 1, pp. 168–180, 2016. View at Google Scholar
  71. D. K. Purohit, T. D. Nandgude, and S. S. Poddar, “Nano-lipid carriers for topical application: Current scenario,” Asian Journal of Pharmaceutics, vol. 9, no. 5, pp. 544–553, 2016. View at Publisher · View at Google Scholar · View at Scopus
  72. K. Westesen, H. Bunjes, and M. H. J. Koch, “Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential,” Journal of Controlled Release, vol. 48, no. 2-3, pp. 223–236, 1997. View at Publisher · View at Google Scholar · View at Scopus
  73. S. Khan, S. Baboota, J. Ali, S. Khan, R. Narang, and J. Narang, “Nanostructured lipid carriers: An emerging platform for improving oral bioavailability of lipophilic drugs,” International Journal of Pharmaceutical Investigation, vol. 5, no. 4, p. 182, 2015. View at Publisher · View at Google Scholar
  74. R. H. Müller, M. Radtke, and S. A. Wissing, “Nanostructured lipid matrices for improved microencapsulation of drugs,” International Journal of Pharmaceutics, vol. 242, no. 1-2, pp. 121–128, 2002. View at Publisher · View at Google Scholar · View at Scopus
  75. B. Sharma and A. Sharma, “Future prospect of nanotechnology in development of anti-ageing formulations,” International Journal of Pharmacy and Pharmaceutical Sciences, vol. 4, no. 3, pp. 57–66, 2012. View at Google Scholar · View at Scopus
  76. N. Naseri, H. Valizadeh, and P. Zakeri-Milani, “Solid lipid nanoparticles and nanostructured lipid carriers: Structure preparation and application,” Advanced Pharmaceutical Bulletin (APB), vol. 5, no. 3, pp. 305–313, 2015. View at Publisher · View at Google Scholar · View at Scopus
  77. K. Sarabjot, N. Ujjwal, S. Ramandeep et al., “Nanostructure lipid carrier (NLC): the new generation of lipid nanoparticles,” Asian Pacific Journal of Health Sciences, vol. 2, no. 2, pp. 76–93, 2015. View at Google Scholar
  78. C. L. Fang, S. A. Al-Suwayeh, and J. Y. Fang, “Nanostructured lipid carriers (NLCs) for drug delivery and targeting,” Recent Patents on Nanotechnology, vol. 7, no. 1, pp. 41–55, 2013. View at Publisher · View at Google Scholar · View at Scopus
  79. N. Dragicevic and H. I. Maibach, “Howard I. Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement”. View at Publisher · View at Google Scholar · View at Scopus
  80. Http://Drrimpler.Com/Dr-Rimpler-Professional-Treatments/Nanocare-Q10-Treatment/?V=920f83e594a1.
  81. P. Shah, D. Bhalodia, and P. Shelat, “Nanoemulsion: A pharmaceutical review,” Systematic Reviews in Pharmacy, vol. 1, no. 1, pp. 24–32, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. P. P. Ronak and R. J. Jay, “An overview on nanoemulsion: a novel approach,” International Journal of Pharmaceutical Sciences and Research, vol. 3, no. 12, pp. 4640–4650, 2012. View at Google Scholar
  83. S. Ozgun, “Nanoemulsions in cosmetics,” Nanomaterials and Nanotechnology.
  84. A. Maali and M. T. H. Mosavian, “Preparation and Application of Nanoemulsions in the Last Decade (2000-2010),” Journal of Dispersion Science and Technology, vol. 34, no. 1, pp. 92–105, 2013. View at Publisher · View at Google Scholar · View at Scopus
  85. J. M. Barnett and R. K. Scher, “Nail cosmetics,” International Journal of Dermatology, vol. 31, no. 10, pp. 675–681, 1992. View at Publisher · View at Google Scholar · View at Scopus
  86. A. Gupta, H. B. Eral, T. A. Hatton, and P. S. Doyle, “Nanoemulsions: formation, properties and applications,” Soft Matter, vol. 12, no. 11, pp. 2826–2841, 2016. View at Publisher · View at Google Scholar
  87. Sharma and Sarangdevot, “Nanoemulsions for Cosmetics,” International Journal of Advanced Resarech In Pharmaceutical & Bio Sciences, vol. 2, no. 3, pp. 408–415, 2012. View at Google Scholar
  88. C. Padmadevi, F. Diana Ariffin, M. Ahmad, A. Asaad, and A. Nagib, “Nanoemulsion for Cosmetic Application,” European Journal of Biomedical and Pharmaceutical Sciences, vol. 3, no. 7, pp. 8–11, 2016. View at Google Scholar
  89. Patel and Joshi, “An overview on nanoemulsion: a novel approach,” International Journal of Pharmaceutical Sciences and Research, vol. 3, no. 12, pp. 4640–4650, 2012. View at Google Scholar
  90. https://www.chanel.com/en_WW/fragrance-beauty/fragrance/p/women/coco-mademoiselle/coco-mademoiselle-fresh-moisture-mist-p116850.html#skuid-0116850.
  91. K. Lata, K. J. Arvind, N. Laxmana, and S. Rajan, “Gold nanoparticles: preparation, characterization and its stability in buffer,” A Journal of Nanotechnology and Its Applications, vol. 17, no. 1, pp. 1–10, 2014. View at Google Scholar
  92. A. K. Khan, R. Rashid, G. Murtaza, and A. Zahra, “Gold nanoparticles: Synthesis and applications in drug delivery,” Tropical Journal of Pharmaceutical Research, vol. 13, no. 7, pp. 1169–1177, 2014. View at Publisher · View at Google Scholar · View at Scopus
  93. H. N. Verma, P. Singh, and R. M. Chavan, “Gold nanoparticle: synthesis and characterization,” Veterinary World, vol. 7, no. 2, pp. 72–77, 2014. View at Publisher · View at Google Scholar · View at Scopus
  94. Y.-C. Yeh, B. Creran, and V. M. Rotello, “Gold nanoparticles: Preparation, properties, and applications in bionanotechnology,” Nanoscale, vol. 4, no. 6, pp. 1871–1880, 2012. View at Publisher · View at Google Scholar · View at Scopus
  95. A. Khalid and A. S. Tawfik, “Gold and Silver Nanoparticles: Synthesis Methods, Characterization Routes and Applications towards Drugs,” Journal of Environmental & Analytical Toxicology, vol. 6, no. 4, pp. 1–10, 2016. View at Google Scholar
  96. A. S. Thakor, J. Jokerst, C. Zavaleta, T. F. Massoud, and S. S. Gambhir, “Gold nanoparticles: a revival in precious metal administration to patients,” Nano Letters, vol. 11, no. 10, pp. 4029–4036, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. F. K. Alanazi, A. A. Radwan, and I. A. Alsarra, “Biopharmaceutical applications of nanogold,” Saudi Pharmaceutical Journal, vol. 18, no. 4, pp. 179–193, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. P. C. Chen, S. C. Mwakwari, and A. K. Oyelere, “Gold nanoparticles: from nanomedicine to nanosensing,” Nanotechnology Science Application, vol. 1, pp. 45–65, 2008. View at Google Scholar
  99. R. Arvizo, R. Bhattacharya, and P. Mukherjee, “Gold nanoparticles: opportunities and challenges in nanomedicine,” Expert Opinion on Drug Delivery, vol. 7, no. 6, pp. 753–763, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. http://www.totalbeauty.com/reviews/product/6184661/chantecaille-nano-gold-energizing-cream.
  101. URL https, https://www.aliexpress.com/item/AMEIZII-Nano-Gold-Original-Liquid-Skin-Care-Face-Day-creams-Facial-Whitening-Moisturizing-Anti-Aging, Serum/32823859689.html.
  102. https://www.amazon.com/Nanogold-Silk-Skincare-Set-Cleansing/dp/B011HDPFCG.
  103. https://www.consumerhealthdigest.com/wrinkle-cream-reviews/nuvoderm-nano-gold.html.
  104. https://www.orogoldcosmetics.com/24k-nano-ultra-silk-serum.html.
  105. A. Singh, G. Garg, and P. K. Sharma, “Nanospheres: A novel approach for targeted drug delivery system,” International Journal of Pharmaceutical Sciences Review and Research, vol. 5, no. 3, pp. 84–88, 2010. View at Google Scholar · View at Scopus
  106. B. Mamo, “Literature review on Biodegradable Nanospheres for Oral and Targeted Drug Delivery,” Asian Journal of Biomedical and Pharmaceutical Sciences, vol. 05, no. 51, pp. 01–12, 2015. View at Publisher · View at Google Scholar
  107. S. S. Guterres, M. P. Alves, and A. R. Pohlmann, “Polymeric Nanoparticles, Nanospheres and Nanocapsules, for Cutaneous Applications,” Drug Target Insights, vol. 2, p. 117739280700200, 2017. View at Publisher · View at Google Scholar
  108. S. Fruchon and R. Poupot, “Pro-inflammatory versus anti-inflammatory effects of dendrimers: The two faces of immuno-modulatory nanoparticles,” Nanomaterials, vol. 7, no. 9, article no. 251, 2017. View at Publisher · View at Google Scholar · View at Scopus
  109. B. Klajnert and M. Bryszewska, “Dendrimers: Properties and applications,” Acta Biochimica Polonica, vol. 48, no. 1, pp. 199–208, 2001. View at Google Scholar · View at Scopus
  110. R. Awani K., T. Ruchi, M. Priyanka, and Y. Pooja, “Dendrimers: a potential carrier for targeted drug delivery system,” Pharmaceutical and Biological Evaluations June, vol. 3, no. 3, pp. 275–287, 2016. View at Google Scholar
  111. E. A. Yapar and Ö. Inal, “Nanomaterials and cosmetics,” Journal of Pharmacy of Istanbul University, vol. 42, no. 1, pp. 43–70, 2012. View at Google Scholar · View at Scopus
  112. K. S. Ibrahim, “Carbon nanotubes-properties and applications: a review,” Carbon Letters, vol. 14, no. 3, pp. 131–144, 2013. View at Publisher · View at Google Scholar
  113. B. K. Kaushik and M. K. Majumder, “Carbon nanotube: Properties and applications,” SpringerBriefs in Applied Sciences and Technology, no. 9788132220466, pp. 17–37, 2015. View at Publisher · View at Google Scholar · View at Scopus
  114. R. Hirlekar, M. Yamagar, H. Garse, V. Mohit, and V. Kadam, “Carbon nanotubes and its applications: A review,” Asian Journal of Pharmaceutical and Clinical Research, vol. 2, no. 4, pp. 17–27, 2009. View at Google Scholar · View at Scopus
  115. M. Zhang and J. Li, “Carbon nanotube in different shapes,” Materials Today, vol. 12, no. 6, pp. 12–18, 2009. View at Publisher · View at Google Scholar · View at Scopus
  116. https://www.google.com/patents/WO2006052276A2.
  117. https://www.google.com/patents/WO2005117537A3.
  118. M. Ambikanandan, Challenges in Delivery of Therapeutic Genomics and Proteomics, Elsevier, 2011.
  119. S.-H. Kim, H. C. Shum, J. W. Kim, J.-C. Cho, and D. A. Weitz, “Multiple polymersomes for programmed release of multiple components,” Journal of the American Chemical Society, vol. 133, no. 38, pp. 15165–15171, 2011. View at Publisher · View at Google Scholar · View at Scopus
  120. D. E. Discher and A. Eisenberg, “Polymer vesicles,” Science, vol. 297, no. 5583, pp. 967–973, 2002. View at Publisher · View at Google Scholar · View at Scopus
  121. H. Bermudez, A. K. Brannan, D. A. Hammer, F. S. Bates, and D. E. Discher, “Molecular weight dependence of polymersome membrane structure, elasticity, and stability,” Macromolecules , vol. 35, no. 21, pp. 8203–8208, 2002. View at Publisher · View at Google Scholar · View at Scopus
  122. X.-Y. Zhang and P.-Y. Zhang, “Polymersomes in nanomedicine - A review,” Current Molecular Pharmacology, vol. 13, no. 2, pp. 124–129, 2017. View at Publisher · View at Google Scholar · View at Scopus
  123. https://patents.google.com/patent/US20130171274.
  124. https://patents.google.com/patent/KR101659314B1/en.
  125. K. Tilekar, K. Prashant, K. Sujit, K. Sachin, and P. Ravindra, “Cubosomes- a drug delivery system,” International Journal of Pharmaceutical, Chemical and Biological Sciences, vol. 4, no. 4, pp. 812–824, 2014. View at Google Scholar
  126. R. B. Rohit, A. O. Riyaz, R. H. Bhargav, and P. G. Prasanna, “Cubosomes: the inimitable nanoparticulate drug carriers,” Scholars Academic Journal of Pharmacy, vol. 2, no. 6, pp. 481–486, 2013. View at Google Scholar
  127. T. Madhurilatha, S. K. Paruchuri, and K. Suria Prabha, “Overview of cubosomes: a nano particle,” International Journal of Research in Pharmacy and Chemistry, vol. 1, pp. 535–541, 2011. View at Google Scholar
  128. R. R. Bhosale, R. A. Osmani, B. R. Harkare, and P. P. Ghodake, “Cubosomes: the inimitable nanoparticulate drug carriers,” Scholars Academic Journal of Pharmacy, vol. 2, no. 6, pp. 481–486, 2013. View at Google Scholar
  129. T. G. Smijs and S. Pavel, “Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness,” Nanotechnology, Science and Applications, vol. 4, no. 1, pp. 95–112, 2011. View at Google Scholar · View at Scopus
  130. D. A. Glaser, “Anti-aging products and cosmeceuticals,” Facial Plastic Surgery Clinics of North America, vol. 12, no. 3, pp. 363–372, 2004. View at Publisher · View at Google Scholar · View at Scopus
  131. J. Rosen, A. Landriscina, and A. Friedman, “Nanotechnology-Based Cosmetics for Hair Care,” Cosmetics, vol. 2, no. 4, pp. 211–224, 2015. View at Publisher · View at Google Scholar
  132. Z. Hu, M. Liao, Y. Chen et al., “A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone,” International Journal of Nanomedicine, vol. 7, pp. 5719–5724, 2012. View at Publisher · View at Google Scholar · View at Scopus
  133. Sesderma fillderma lips lip volumizer, https://www.dermacaredirect.co.uk/sesderma-fillderma-lip.html.
  134. H. Bethany, “Zapping nanoparticles into nail polish,” Laser Ablation Method Makes Cosmetic and Biomedical Coatings in a Flash, vol. 95, no. 12, p. 9, 2017. View at Google Scholar
  135. L. Pereira, N. Dias, J. Carvalho, S. Fernandes, C. Santos, and N. Lima, “Synthesis, characterization and antifungal activity of chemically and fungal-produced silver nanoparticles against Trichophyton rubrum,” Journal of Applied Microbiology, vol. 117, no. 6, pp. 1601–1613, 2014. View at Publisher · View at Google Scholar · View at Scopus
  136. G. Oberdörster, E. Oberdörster, and J. Oberdörster, “Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles,” Environmental Health Perspectives, vol. 113, no. 7, pp. 823–839, 2005. View at Publisher · View at Google Scholar · View at Scopus
  137. C. Buzea, I. I. Pacheco, and K. Robble, “Nanomaterial and nanoparticles: sources and toxicity,” Biointerphases, vol. 2, no. 4, pp. 17–71, 2007. View at Google Scholar
  138. C. S. Yah, S. E. Iyuke, and G. S. Simate, “A review of nanoparticles toxicity and their routes of exposures,” Iranian Journal of Pharmaceutical Sciences, vol. 8, no. 1, pp. 299–314, 2012. View at Google Scholar · View at Scopus
  139. M.-T. Zhu, W.-Y. Feng, Y. Wang et al., “Particokinetics and extrapulmonary translocation of intratracheally instilled ferric oxide nanoparticles in rats and the potential health risk assessment,” Toxicological Sciences, vol. 107, no. 2, pp. 342–351, 2009. View at Publisher · View at Google Scholar · View at Scopus
  140. J. S. Tsuji, A. D. Maynard, P. C. Howard et al., “Research strategies for safety evaluation of nanomaterials, part IV: risk assessment of nanoparticles,” Toxicological Sciences, vol. 89, no. 1, pp. 42–50, 2006. View at Publisher · View at Google Scholar · View at Scopus
  141. J. Paul and P. F. S. Roel, “Toxicological characterization of engineered nanoparticles,” Nanoparticle Technology for Drug Delivery, pp. 161–170, 2006. View at Google Scholar
  142. G. Wakefield, S. Lipscomb, E. Holland, and J. Knowland, “The effects of manganese doping on UVA absorption and free radical generation of micronised titanium dioxide and its consequences for the photostability of UVA absorbing organic sunscreen components,” Photochemical & Photobiological Sciences, vol. 3, no. 7, pp. 648–652, 2004. View at Publisher · View at Google Scholar · View at Scopus
  143. P. H. M. Hoet, I. Brüske-Hohlfeld, and O. V. Salata, “Nanoparticles—known and unknown health risks,” Journal of Nanobiotechnology, vol. 2, article 12, 2004. View at Publisher · View at Google Scholar · View at Scopus
  144. R. Toll, U. Jacobi, H. Richter, J. Lademann, H. Schaefer, and U. Blume-Peytavi, “Penetration profile of microspheres in follicular targeting of terminal hair follicles,” Journal of Investigative Dermatology, vol. 123, no. 1, pp. 168–176, 2004. View at Publisher · View at Google Scholar · View at Scopus
  145. A. Nel, T. Xia, L. Mädler, and N. Li, “Toxic potential of materials at the nanolevel,” Science, vol. 311, no. 5761, pp. 622–627, 2006. View at Publisher · View at Google Scholar · View at Scopus
  146. V. K. M. Poon and A. Burd, “In vitro cytotoxity of silver: implication for clinical wound care,” Burns, vol. 30, no. 2, pp. 140–147, 2004. View at Publisher · View at Google Scholar · View at Scopus
  147. X.-D. Zhang, H.-Y. Wu, D. Wu et al., “Toxicologic effects of gold nanoparticles in vivo by different administration routes,” International Journal of Nanomedicine, vol. 5, no. 1, pp. 771–781, 2010. View at Publisher · View at Google Scholar · View at Scopus
  148. A. Mavon, C. Miquel, O. Lejeune, B. Payre, and P. Moretto, “In vitro percutaneous absorption and in vivo stratum corneum distribution of an organic and a mineral sunscreen,” Skin Pharmacology and Physiology, vol. 20, no. 1, pp. 10–20, 2006. View at Publisher · View at Google Scholar · View at Scopus
  149. C. M. Sayes, J. D. Fortner, W. Guo et al., “The differential cytotoxicity of water-soluble fullerenes,” Nano Letters, vol. 4, no. 10, pp. 1881–1887, 2004. View at Publisher · View at Google Scholar · View at Scopus
  150. B. Arvidson, “A review of axonal transport of metals,” Toxicology, vol. 88, no. 1-3, pp. 1–14, 1994. View at Publisher · View at Google Scholar · View at Scopus
  151. H. Shi, R. Magaye, V. Castranova, and J. Zhao, “Titanium dioxide nanoparticles: a review of current toxicological data,” Particle and Fibre Toxicology, vol. 10, no. 1, article 15, 2013. View at Publisher · View at Google Scholar · View at Scopus
  152. O. M. Posada, R. J. Tate, and M. H. Grant, “Toxicity of cobalt-chromium nanoparticles released from a resurfacing hip implant and cobalt ions on primary human lymphocytes in vitro,” Journal of Applied Toxicology, vol. 35, no. 6, pp. 614–622, 2015. View at Publisher · View at Google Scholar
  153. K. W. Abbott, S. Gopalan, G. E. Marchant, and D. J. Sylvester, “International regulatory regimes for nanotechnology,” Social Science Research Network, vol. 2, no. 5, 2006. View at Publisher · View at Google Scholar
  154. B. M. Sandoval, Perspectives on FDA's Regulation of Nanotechnology: Emerging Challenges and Potential Solutions, vol. 8, Institute of Food Technologist, 4 edition, 2009.
  155. A. Khaiat, “Regulations in Asia from China to Japan, Korea, ASEAN,” http://asia.incosmetics.com/RXUK/RXUK_InCosmeticsAsia/2014/Documents/AlainKhaiatCosmeticRegulationsFromchinaToJapanKoreaASEAN.pdf?v=635524377936486453.
  156. G. E. Marchant and D. J. Sylvester, “Transnational models for regulation of nanotechnology,” Journal of Law Medicine & Ethics, vol. 34, no. 4, pp. 2–13, 2006. View at Google Scholar
  157. N. B. David, “Review of the regulation of products at the interface between cosmetics and therapeutic goods,” 2005.
  158. C. R. K. Raj and K. C. Kaushal, “Regulatory Requirements for Cosmetics in Relation with Regulatory Authorities in India against US, Europe, Australia and Asean,” International Journal of Pharma Research and Health Science, vol. 4, no. 5, pp. 1332–1341, 2016. View at Google Scholar
  159. Dhull, “Swagat Tripathy and Harish Dureja. Cosmetics: Regulatory Scenario in USA, EU and India,” Journal of Pharmaceutical Technology Research and Management, vol. 3, no. 2, pp. 127–139, 2015. View at Google Scholar
  160. “Nanomaterials and the EU Cosmetics Regulation: Implications for Your Company,” http://www.gcimagazine.com/business/management/regulation/143553126.html?pa.
  161. “Asia Personal Care & Cosmetics Market Guide,” 2016.
  162. C. Hammes, Cosmeceuticals, The cosmetic-drug borderline, Drug discovery approaches for developing Cosmeceuticals: advanced skin care and cosmetic products, IBC Library Series, 1997.
  163. “SCCP/1147/07: Opinion on Safety of Nanomaterials in Cosmetic Products, Scientific Committee on Consumer Products, Health & Consumer Protection Directorate-General, European Commission,” Adopted by the SCCP after the public consultation on the 14th plenary of 18 December 2007.
  164. L. E. Millikan, “Cosmetology, cosmetics, cosmeceuticals: Definitions and regulations,” Clinics in Dermatology, vol. 19, no. 4, pp. 371–374, 2001. View at Publisher · View at Google Scholar · View at Scopus
  165. B. A. Liang and K. M. Hartman, “It's only skin deep: FDA regulation of skin care cosmetics claims.,” Cornell journal of law and public policy, vol. 8, no. 2, pp. 249–280, 1999. View at Google Scholar · View at Scopus