Table of Contents
Journal of Polymers
Volume 2013, Article ID 356058, 12 pages
http://dx.doi.org/10.1155/2013/356058
Research Article

Studies on Ion-Exchange Properties of Polyaniline Zr(IV) Tungstoiodophosphate Nanocomposite Ion Exchanger

1Research Department of Chemistry, Aditanar College of Arts and Science, Tiruchendur, Tamilnadu 628 216, India
2Department of Chemistry, T.D.M.N.S. College, Kallikulam, Tamilnadu 627 113, India

Received 22 March 2013; Revised 31 July 2013; Accepted 6 August 2013

Academic Editor: José R. d'Almeida

Copyright © 2013 K. Jacinth Mispa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Shimidzu, A. Ohtani, and K. Honda, “Charge-controllable poly pyrrole/poly electrolyte composite membranes: part III. Electrochemical deionization system constructed by anion-exchangeable and cation-exchangeable polypyrrole electrodes,” Journal of Electroanalytical Chemistry, vol. 251, no. 2, pp. 323–337, 1988. View at Publisher · View at Google Scholar
  2. C. Zhong, K. Doblhofer, and G. Weinberg, “The effect of incorporated negative fixed charges on the membrane properties of polypyrrole films,” Faraday Discussions of the Chemical Society, vol. 88, pp. 307–316, 1989. View at Publisher · View at Google Scholar · View at Scopus
  3. U. Schybert, N. Husing, and A. Lorenz, “Oxide gels and ceramics prepared by a nonhydrolytic Sol-Gel process,” Chemistry of Materials, vol. 7, no. 11, pp. 2110–2114, 1995. View at Publisher · View at Google Scholar
  4. N. K. Raman, M. T. Anderson, and C. J. Brinker, “Template-based approaches to the preparation of amorphous, nanoporous silicas,” Chemistry of Materials, vol. 8, no. 8, pp. 1682–1701, 1996. View at Google Scholar · View at Scopus
  5. J. Wen and G. L. Wilkans, “Organic/inorganic hybrid network materials by the Sol-Gel approach,” Chemistry of Materials, vol. 8, no. 8, pp. 1667–1681, 1996. View at Publisher · View at Google Scholar
  6. F. Helfrich, Ion-Exchange, Mac Graw-Hill, New York, NY, USA, 1962.
  7. R. Kunnin, Ion- Exchange Resins, John Wiley & Sons, New York, NY, USA, 3rd edition, 1958.
  8. R. Schoolorn, “Intercalation systems as nanostructured functional materials,” Chemistry of Materials, vol. 8, no. 8, pp. 1747–1757, 1996. View at Publisher · View at Google Scholar
  9. P. Gomez-Romero, “Hybrid organic-inorganic materials-in search of synergic activity,” Advanced Materials, vol. 13, p. 163, 2001. View at Google Scholar
  10. Y. Wang and N. Herrom, “X-ray photoconductive nanocomposites,” Science, vol. 273, no. 5275, pp. 632–634, 1996. View at Publisher · View at Google Scholar
  11. S. Higashika, K. Kimura, Y. Matsuo, and Y. Sugie, “Synthesis of polyaniline-intercalated graphite oxide,” Carbon, vol. 37, no. 2, pp. 354–355, 1999. View at Google Scholar · View at Scopus
  12. A. A. Khan and M. M. Alam, “New and novel organic-inorganic type crystalline “polypyrrolel/polyantimonic acid” composite system: preparation, characterization and analytical applications as a cation-exchange material and Hg(II) ion-selective membrane electrode,” Analytica Chimica Acta, vol. 504, no. 2, pp. 253–264, 2004. View at Publisher · View at Google Scholar
  13. A. A. Khan and Inamuddin, “Preparation, physico-chemical characterization, analytical applications and electrical conductivity measurement studies of an “organic-inorganic” composite cation-exchanger: polyaniline Sn(IV) phosphate,” Reactive and Functional Polymers, vol. 66, no. 12, pp. 1649–1663, 2006. View at Publisher · View at Google Scholar
  14. A. A. Khan, Inamuddin, and M. M. Alam, “Determination and separation of Pb2+ from aqueous solutions using a fibrous type organic-inorganic hybrid cation-exchange material: polypyrrole thorium(IV) phosphate,” Reactive and Functional Polymers, vol. 63, no. 2, pp. 119–133, 2005. View at Publisher · View at Google Scholar
  15. A. A. Khan and M. M. Alam, “Synthesis, characterization and analytical applications of a new and novel “organic-inorganic” composite material as a cation exchanger and Cd(II) ion-selective membrane electrode: polyaniline Sn(IV) tungstoarsenate,” Reactive and Functional Polymers, vol. 55, no. 3, pp. 277–290, 2003. View at Publisher · View at Google Scholar
  16. K. G. Varshney, N. Tayal, A. A. Khan, and R. Niwas, “Synthesis, characterization and analytical applications of lead (II) selective polyacrylonitrile thorium (IV) phosphate: a novel fibrous ion exchanger,” Colloids and Surfaces A, vol. 181, no. 1–3, pp. 123–129, 2001. View at Publisher · View at Google Scholar
  17. G. Alberti, M. Casciola, C. Dionigi, and R. Vivani, in Proceedings of the International Conference on Ion- Exchange (ICIE '95), Takamtsu, Japan, 1995.
  18. J. C. W. Chien, Polyacetylene-Chemistry, Physics and Materials Science, chapter 2, Academic Press, San Diego, Fla, USA, 1984.
  19. G. R. Goward, F. Leroum, and L. F. Nazir, “Poly(pyrrole) and poly(thiophene)/vanadium oxide interleaved nanocomposites: positive electrodes for lithium batteries,” Electrochimica Acta, vol. 43, no. 10-11, pp. 1307–1313, 1998. View at Publisher · View at Google Scholar
  20. P. Singh, J. P. Rawat, and N. Rehman, “Synthesis, characterization and Ion Exchange Properties of a New Inorganic Ion Exchange Materials: Zirconium(IV) iodooxalate,” Indian Journal of Chemistry A, vol. 41, p. 1616, 2002. View at Google Scholar
  21. W. A. Siddiqui and S. A. Khan, “Synthesis, characterization and ion exchange properties of zirconium(IV) tungstoiodophosphate, a new cation exchanger,” Bulletin of Materials Science, vol. 30, no. 1, pp. 43–49, 2007. View at Publisher · View at Google Scholar
  22. D. C. Trivedi, “Polyanilines in conductive polymers: synthesis and electrical properties,” in Handbook of Organic Conductive Molecules and Polymers, H. S. Nalwa, Ed., vol. 2, p. 505, John Wiley & Sons, Chichester, UK, 1997. View at Google Scholar
  23. A. A. Khan and T. Akhtar, “Preparation, physico-chemical characterization and electrical conductivity measurement studies of an organic-inorganic nanocomposite cation-exchanger: poly-o-toluidine Zr(IV) phosphate,” Electrochimica Acta, vol. 53, no. 17, pp. 5540–5548, 2008. View at Publisher · View at Google Scholar
  24. N. E. Topp and K. W. Pepper, “Properties of ion-exchange resins in relation to their structure. Part I. Titration curves,” Journal of the Chemical Society, pp. 3299–3303, 1949. View at Google Scholar · View at Scopus
  25. C. N. Reilley, R. W. Schmidt, and F. S. Sadek, “Chelon approach to analysis (I) survey of theory and application,” Journal of Chemical Education, vol. 36, p. 555, 1959. View at Google Scholar
  26. J. P. Travers, J. Chroboczek, F. Devreux, and F. Genoud, “Transport and magnetic resonance studies of polyaniline,” Molecular Crystals and Liquid Crystals, vol. 121, no. 1–4, p. 195, 1985. View at Publisher · View at Google Scholar
  27. B. Lundberg, W. R. Salaneck, and LundstromI, “Pressure, temperature and field dependence of hopping conduction in polyaniline,” Synthetic Metals, vol. 21, no. 1–3, pp. 143–147, 1987. View at Publisher · View at Google Scholar
  28. W. S. Huang, A. G. Mac Diarmid, and A. J. Epstein, “Polyaniline: non-oxidative doping of the emeraldine base form to the metallic regime,” Journal of the Chemical Society, Chemical Communications, no. 23, pp. 1784–1786, 1987. View at Google Scholar
  29. W. W. Focke, G. E. Wnek, and Y. Wei, “Influence of oxidation state, pH, and counterion on the conductivity of polyaniline,” Journal of Physical Chemistry, vol. 91, no. 22, pp. 5813–5818, 1987. View at Google Scholar · View at Scopus
  30. W. W. Focke and G. E. Wnek, “Conduction mechanisms in polyaniline (emeraldine salt),” Journal of Electroanalytical Chemistry, vol. 256, no. 2, pp. 343–352, 1988. View at Google Scholar · View at Scopus
  31. W. R. Salaneck, I. Lundstrom, W. S. Huang, and A. G. Mac Diarmid, “A two-dimensional-surface “state diagram” for polyaniline,” Synthetic Metals, vol. 13, no. 4, pp. 291–297, 1986. View at Publisher · View at Google Scholar
  32. R. J. Cushman, P. M. McManus, and S. C. Yang, “Spectroelectrochemical Study of Polyaniline: the construction of a Ph-potential phase diagram,” Journal of Electroanalytical Chemistry and Interfacial Chemistry, vol. 291, p. 335, 1986. View at Google Scholar
  33. C. N. R. Rao, Chemical Applications of Infrared Spectroscopy, Academic Press, New York, NY, USA, 1963.
  34. A. G. MacDiarmid, J. C. Chiang, W. S. Huang, B. D. Hum-phery, and N. L. D. Somasiri, “Polyaniline: protonic acid doping to the metallic regime,” Molecular Crystals and Liquid Crystals, vol. 25, p. 309, 1985. View at Google Scholar
  35. A. A. Khan and T. Akhtar, “Preparation, physico-chemical characterization and electrical conductivity measurement studies of an organic-inorganic nanocomposite cation-exchanger: poly-o-toluidine Zr(IV) phosphate,” Electrochimica Acta, vol. 53, no. 17, pp. 5540–5548, 2008. View at Publisher · View at Google Scholar
  36. A. P. Gupta, H. Agarwal, and S. Ikram, “Studies on new composite material polyaniline zirconium (IV) tungstophosphate, Th (IV) selective cation exchanger,” Journal of Indian Chemical Society, vol. 80, p. 57, 2003. View at Google Scholar
  37. S. A. Nabi, A. Islam, and N. Rehman, “Synthesis, ion exchange properties and analytical application of a semi crystalline Zr(IV) sulphosalicylate,” Annales de Chimie Science des Matériaux, vol. 22, no. 7, p. 463, 1997. View at Google Scholar
  38. J. P. Rawat and J. P. Singh, “Studies on inorganic ion exchangers. II. Synthesis, ion exchange properties, and applications of ferric arsenate,” Canadian Journal of Chemistry, vol. 54, no. 16, pp. 2534–2539, 1976. View at Publisher · View at Google Scholar
  39. F. C. Nachod and W. Wood, “The reaction velocity of ion exchange,” Journal of the American Chemical Society, vol. 66, no. 8, pp. 1380–1384, 1944. View at Google Scholar · View at Scopus
  40. G. James, Cappuccino, and N. Sherman, Microbiological Laboratory Manual, Wonder Book, Frederick, Md, USA, 5th edition, 1999.