Table of Contents
Journal of Polymers
Volume 2013, Article ID 768653, 7 pages
http://dx.doi.org/10.1155/2013/768653
Research Article

Rheological Properties and Reverse Micelles Conditions of PEO-PPO-PEO Pluronic F68: Effects of Temperature and Solvent Mixtures

1Laboratoire de Physique de la Matière Molle et de la Modélisation Electromagnétique, Faculté des Sciences de Tunis, Université El Manar, Campus Universitaire, 2092 Tunis, Tunisia
2Institut National des Sciences Appliquées et de Technologie, INSAT, Centre Urbain Nord, BP 676, 1082 Tunis, Tunisia

Received 23 June 2013; Revised 28 August 2013; Accepted 4 September 2013

Academic Editor: Dirk Kuckling

Copyright © 2013 Mouna Ben Henda et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Ghaouar, M. Ben Henda, A. Aschi, and A. Gharbi, “Study of PEO-PPO-PEO copolymers conformational changes: viscosity and dynamic light scattering measurements,” Journal of Macromolecular Science B, vol. 50, no. 11, pp. 2150–2164, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Ghaouar, A. Aschi, M. M. Jebari, and A. Gharbi, “Structure and thermodynamic modelling of Pluronic L64 solutions,” e-Polymers, vol. 59, no. 1, pp. 621–637, 2013. View at Google Scholar · View at Scopus
  3. M. M. Jebari, N. Ghaouar, A. Aschi, and A. Gharbi, “Aggregation behaviour of Pluronic L64 surfactant at various temperatures and concentrations examined by dynamic light scattering and viscosity measurements,” Polymer International, vol. 55, no. 2, pp. 176–183, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Alexandridis and T. A. Hatton, “Poly(ethylene oxide)poly(propylene oxide)poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling,” Colloids and Surfaces A, vol. 96, no. 1-2, pp. 1–46, 1995. View at Google Scholar · View at Scopus
  5. R. Gérard, “Micellization of block copolymers,” Progress in Polymer Science, vol. 28, no. 7, pp. 1107–1170, 2003. View at Publisher · View at Google Scholar
  6. M. Almgren, P. Bahadur, M. Jansson, P. Li, W. Brown, and A. Bahadur, “Static and dynamic properties of a (PEO-PPO-PEO) block copolymer in aqueous solution,” Journal of Colloid and Interface Science, vol. 151, no. 1, pp. 157–165, 1992. View at Google Scholar · View at Scopus
  7. C. Perreur, J.-P. Habas, J. François, J. Peyrelasse, and A. Lapp, “Determination of the structure of the organized phase of the block copolymer PEO-PPO-PEO in aqueous solutions under flow by small-angle neutron scattering,” Physical Review E, vol. 65, no. 4, Article ID 041802, 7 pages, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. A. A. Al-Saden, T. L. Whateley, and A. T. Florence, “Poloxamer association in aqueous solution,” Journal of Colloid and Interface Science, vol. 90, no. 2, pp. 303–309, 1982. View at Google Scholar · View at Scopus
  9. R. Nagarajan and E. Ruckenstein, “Theory of surfactant self-assembly: a predictive molecular thermodynamic approach,” Langmuir, vol. 7, no. 12, pp. 2934–2969, 1991. View at Google Scholar · View at Scopus
  10. C. McDonald and C. K. Wong, “The effect of temperature on the micellar properties of a polyoxypropylene polyoxyethylene polymer in water,” Journal of Pharmacy and Pharmacology, vol. 26, no. 7, pp. 556–557, 1974. View at Google Scholar · View at Scopus
  11. D. W. Murhammer and C. F. Goochee, “Sparged animal cell bioreactors: mechanism of cell damage and pluronic F-68 protection,” Biotechnology Progress, vol. 6, no. 5, pp. 391–397, 1990. View at Google Scholar · View at Scopus
  12. P. Alexandridis, U. Olsson, and B. Lindman, “A record nine different phases (four cubic, two hexagonal, and one lamellar lyotropic liquid crystalline and two micellar solutions) in a ternary isothermal system of an amphiphilic block copolymer and selective solvents (water and oil),” Langmuir, vol. 14, no. 10, pp. 2627–2638, 1998. View at Google Scholar · View at Scopus
  13. G. Wanka, H. Hoffmann, and W. Ulbricht, “Phase diagrams and aggregation behavior of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) triblock copolymers in aqueous solutions,” Macromolecules, vol. 27, no. 15, pp. 4145–4159, 1994. View at Google Scholar · View at Scopus
  14. C. Booth and D. Attwood, “Effects of block architecture and composition on the association properties of poly(oxyalkylene) copolymers in aqueous solution,” Macromolecular Rapid Communications, vol. 21, no. 9, pp. 501–527, 2000. View at Google Scholar · View at Scopus
  15. S. L. Guo, T. J. Hou, and X. J. Xu, “Simulation of the phase behavior of the (EO)13(PO)30(EO)13(Pluronic L64)/water/p-xylene system using MesoDyn,” Journal of Physical Chemistry B, vol. 106, no. 43, pp. 11397–11403, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Alexandridis and K. Andersson, “Reverse micelle formation and water solubilization by polyoxyalkylene block copolymers in organic solvent,” Journal of Physical Chemistry B, vol. 101, no. 41, pp. 8103–8111, 1997. View at Google Scholar · View at Scopus
  17. P. Alexandridis, “Poly(ethylene oxide)-poly(propylene oxide) block copolymer surfactants,” Current Opinion in Colloid & Interface Science, vol. 2, no. 5, pp. 478–489, 1997. View at Publisher · View at Google Scholar
  18. J. Csernica, R. F. Baddour, and R. E. Cohen, “Morphological arrangements of block copolymers that result in low gas permeability,” Macromolecules, vol. 23, no. 5, pp. 1429–1433, 1990. View at Google Scholar · View at Scopus
  19. N. J. Jain, K. Contractor, and P. Bahadur, “Aggregation and phase behaviour of PEO/PPO/PEO block copolymers and their mixtures in water,” Journal of Surface Science and Technology, vol. 13, no. 2–4, pp. 89–98, 1997. View at Google Scholar · View at Scopus
  20. R. Ivanova, B. Lindman, and P. Alexandridis, “Evolution in structural polymorphism of pluronic F127 poly(ethylene oxide)-poly(propylene oxide) block copolymer in ternary systems with water and pharmaceutically acceptable organic solvents: from “glycols” to ‘oils’,” Langmuir, vol. 16, no. 23, pp. 9058–9069, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. Z. Zhou and B. Chu, “Anomalous association behavior of an ethylene oxide/propylene oxide ABA block copolymer in water,” Macromolecules, vol. 20, no. 12, pp. 3089–3091, 1987. View at Google Scholar · View at Scopus
  22. W. Brown, K. Schillén, M. Almgren, S. Hvidt, and P. Bahadur, “Micelle and gel formation in a poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) triblock copolymer in water solution. Dynamic and static light scattering and oscillatory shear measurements,” Journal of Physical Chemistry, vol. 95, no. 4, pp. 1850–1858, 1991. View at Google Scholar · View at Scopus
  23. H. Cui, Z. Chen, K. L. Wooley, and D. J. Pochan, “Controlling micellar structure of amphiphilic charged triblock copolymers in dilute solution via coassembly with organic counterions of different spacer lengths,” Macromolecules, vol. 39, no. 19, pp. 6599–6607, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. X. Liang, G. Mao, and K. Y. S. Ng, “Effect of chain lengths of PEO-PPO-PEO on small unilamellar liposome morphology and stability: an AFM investigation,” Journal of Colloid and Interface Science, vol. 285, no. 1, pp. 360–372, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Mortensen and J. S. Pedersen, “Structural study on the micelle formation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer in aqueous solution,” Macromolecules, vol. 26, no. 4, pp. 805–812, 1993. View at Google Scholar · View at Scopus
  26. G. Wanka, H. Hoffmann, and W. Ulbricht, “The aggregation behavior of poly-(oxyethylene)-poly-(oxypropylene)-poly-(oxyethylene)-block-copolymers in aqueous solution,” Colloid & Polymer Science, vol. 268, no. 2, pp. 101–117, 1990. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Mortensen and W. Brown, “Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solution. The influence of relative block size,” Macromolecules, vol. 26, no. 16, pp. 4128–4135, 1993. View at Google Scholar · View at Scopus
  28. G. Gente, A. Iovino, and C. la Mesa, “Supramolecular association of a triblock copolymer in water,” Journal of Colloid and Interface Science, vol. 274, no. 2, pp. 458–464, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. Z. L. Yun, R. B. Stubbersfield, and C. Booth, “Oxyethylene-oxypropylene-oxyethylene triblock copolymers crystallised from dilute solution,” European Polymer Journal, vol. 19, no. 2, pp. 107–114, 1983. View at Google Scholar
  30. S. Borbély, “Small-angle neutron scattering study of Pluronic F68 tri-block copolymer solutions,” Physica B, vol. 241–243, pp. 1016–1018, 1997. View at Google Scholar · View at Scopus
  31. J. L. Newsted, “Effect of light, temperature, and pH on the accumulation of phenol by Selenastrum capricornutum, a green alga,” Ecotoxicology and Environmental Safety, vol. 59, no. 2, pp. 237–243, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Kadam, B. Bharatiya, P. A. Hassan, G. Verma, V. K. Aswal, and P. Bahadur, “Effect of an amphiphilic diol (Surfynol) on the micellar characteristics of PEO-PPO-PEO block copolymers in aqueous solutions,” Colloids and Surfaces A, vol. 363, no. 1–3, pp. 110–118, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. B. Bharatiya, C. Guo, J. H. Ma, P. A. Hassan, and P. Bahadur, “Aggregation and clouding behavior of aqueous solution of EO-PO block copolymer in presence of n-alkanols,” European Polymer Journal, vol. 43, no. 5, pp. 1883–1891, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. R. R. Matheson Jr., “Viscosity of solutions of rigid rodlike macromolecules,” Macromolecules, vol. 13, no. 3, pp. 643–648, 1980. View at Google Scholar · View at Scopus
  35. Y. Kadam, R. Ganguly, M. Kumbhakar, V. K. Aswal, P. A. Hassan, and P. Bahadur, “Time dependent sphere-to-rod growth of the pluronic micelles: investigating the role of core and corona solvation in determining the micellar growth rate,” Journal of Physical Chemistry B, vol. 113, no. 51, pp. 16296–16302, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. R. Ganguly, N. Choudhury, V. K. Aswal, and P. A. Hassan, “Pluronic L64 micelles near cloud point: investigating the role of micellar growth and interaction in critical concentration fluctuation and percolation,” Journal of Physical Chemistry B, vol. 113, no. 3, pp. 668–675, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Alexandridis, U. Olsson, and B. Lindman, “Self-assembly of amphiphilic block copolymers: the (EO)13(PO)30(EO)13-water-p-xylene system,” Macromolecules, vol. 28, no. 23, pp. 7700–7710, 1995. View at Google Scholar · View at Scopus
  38. G. Wu, Z. Zhou, and B. Chu, “Water-induced micelle formation of block copoly(oxyethylene-oxypropylene-oxyethylene) in o-xylene,” Macromolecules, vol. 26, no. 8, pp. 2117–2125, 1993. View at Google Scholar · View at Scopus
  39. J.-F. Gohy, “Block copolymer micelles,” Advances in Polymer Science, vol. 190, no. 1, pp. 65–136, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Doe, H.-S. Jang, S. R. Kline, and S.-M. Choi, “Subdomain structures of lamellar and reverse hexagonal pluronic ternary systems investigated by small angle neutron scattering,” Macromolecules, vol. 42, no. 7, pp. 2645–2650, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. Y.-J. Huang and M. Z. Yates, “Copper etching by water-in-oil microemulsions,” Colloids and Surfaces A, vol. 281, no. 1–3, pp. 215–220, 2006. View at Publisher · View at Google Scholar · View at Scopus