Table of Contents
Journal of Powder Technology
Volume 2014, Article ID 674782, 9 pages
http://dx.doi.org/10.1155/2014/674782
Research Article

Cumulative Effect of Pressing and Drying on Stress Generation within a Green Ceramic Compact

1Université de Lyon, Institut National des Sciences Appliquées de Lyon, Laboratoire de Mécanique des Contacts et des Structures (LaMCoS), CNRS UMR 5259, Campus de la Doua, bât. Coulomb, 20 Avenue Albert Einstein, 69621 Villeurbanne, France
2Université de Lyon, Université Claude Bernard Lyon 1, Laboratoire d’Automatique et de Génie des Procédés (LAGEP), CNRS, UMR 5007, Campus de la Doua, bât. CPE, 3 rue Victor Grignard, 69616 Villeurbanne, France

Received 14 December 2013; Accepted 29 January 2014; Published 8 April 2014

Academic Editor: Fumio Saito

Copyright © 2014 E. Vidal-Sallé et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Musielak, “Internal stresses caused by outflow of moisture and phase change inside dried material,” Drying Technology, vol. 14, no. 2, pp. 289–306, 1996. View at Google Scholar · View at Scopus
  2. S. J. Kowalski, G. Musielak, and A. Rybicki, “The response of dried materials to drying conditions,” International Journal of Heat and Mass Transfer, vol. 40, no. 5, pp. 1217–1226, 1997. View at Google Scholar · View at Scopus
  3. J. Banaszak and S. J. Kowalski, “Theoretical and experimental analysis of stresses and fractures in clay like materials during drying,” Chemical Engineering and Processing: Process Intensification, vol. 44, no. 4, pp. 497–503, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Itaya, S. Mabuchi, and M. Hasatani, “Deformation behavior of ceramic slabs by nonuniform drying,” Drying Technology, vol. 13, no. 3, pp. 801–819, 1995. View at Google Scholar · View at Scopus
  5. R. Peczalski, P. Laurent, J. Andrieu, J. C. Boyer, and M. Boivin, “Drying-induced cracking of abrasive rings: risk prediction and process optimisation by numerical simulation,” Drying Technology, vol. 14, no. 2, pp. 333–348, 1996. View at Google Scholar · View at Scopus
  6. Z.-X. Gong and A. S. Mujumdar, “Development of drying schedules for one-side-heating drying of refractory concrete slabs based on a finite element model,” Journal of the American Ceramic Society, vol. 79, no. 6, pp. 1649–1658, 1996. View at Google Scholar · View at Scopus
  7. Z.-X. Gong and A. S. Mujumdar, “A two-dimensional finite element model for kiln-drying of refractory concrete,” Drying Technology, vol. 13, no. 3, pp. 585–605, 1995. View at Google Scholar · View at Scopus
  8. D. Falgon, E. Vidal-Sallé, J.-C. Boyer, R. Peczalski, and J. Andrieu, “Identification procedure of a hardening law for powder compaction,” Powder Technology, vol. 157, no. 1–3, pp. 183–190, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Peczalski, D. Falgon, J. Andrieu, J.-C. Boyer, and E. Vidal-Sallé, “Impact of density gradients on the stress level within a green ceramic compact during drying,” Drying Technology, vol. 23, no. 1-2, pp. 71–82, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. M. L. Baron, I. Nelson, and I. Sandler, “Influence of constitutive models on ground motion predictions,” Journal of the Engineering Mechanics Division, vol. 99, no. 6, pp. 1181–1200, 1973. View at Google Scholar · View at Scopus
  11. D. Bortzmeyer, “Modelling ceramic powder compaction,” Powder Technology, vol. 70, no. 2, pp. 131–139, 1992. View at Google Scholar · View at Scopus
  12. I. Aydin, B. J. Briscoe, and N. Ozkan, “Modeling of powder compaction: a review,” Materials Research Society Bulletin, vol. 22, no. 12, pp. 45–51, 1997. View at Google Scholar · View at Scopus
  13. I. Aydin, B. J. Briscoe, and K. Y. Sanliturk, “Dimensional variation of die-pressed ceramic green compacts: comparison of a finite element modelling with experiment,” Journal of the European Ceramic Society, vol. 17, no. 10, pp. 1201–1212, 1997. View at Google Scholar · View at Scopus
  14. H. Zipse, “Finite-element simulation of the die pressing and sintering of a ceramic component,” Journal of the European Ceramic Society, vol. 17, no. 14, pp. 1707–1713, 1997. View at Google Scholar · View at Scopus
  15. N. Özkan and B. J. Briscoe, “Characterization of die-pressed green compacts,” Journal of the European Ceramic Society, vol. 17, no. 5, pp. 697–711, 1997. View at Google Scholar · View at Scopus
  16. K. T. Kim, S. W. Choi, and H. Park, “Densification behavior of ceramic powder under cold compaction,” Journal of Engineering Materials and Technology, vol. 122, no. 2, pp. 238–244, 2000. View at Google Scholar · View at Scopus
  17. F. L. di Maggio and I. S. Sandler, “Material model for granular soils,” Journal of the Engineering Mechanics Division, vol. 97, no. 3, pp. 935–950, 1971. View at Google Scholar