Table of Contents
International Journal of Quality, Statistics, and Reliability
Volume 2008, Article ID 263895, 12 pages
http://dx.doi.org/10.1155/2008/263895
Research Article

Fuzzy Risk Graph Model for Determining Safety Integrity Level

1LARPI Laboratory, Safety Department, Institute of Health and Occupational Safety, University of Batna, Road Med El-Hadi Boukhlouf, Batna 05000, Algeria
2LSPIE Laboratory, Electrical Engineering Department, Faculty of Engineering, University of Batna, Road Med El-Hadi Boukhlouf, Batna 05000, Algeria

Received 15 August 2007; Revised 15 November 2007; Accepted 14 January 2008

Academic Editor: Nagi Gebraeel

Copyright © 2008 R. Nait-Said et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. R. Timms, “IEC 61511-an aid to COMAH and safety case regulations compliance,” Measurement & Control, vol. 37, part 4, pp. 115–122, 2004. View at Google Scholar
  2. Functional safety of electrical/electronic/programmable electronic safety related systems, 1998, IEC 61508 Standard, Parts 1–6, 1st edition.
  3. Functional safety-Safety instrumented systems for the process industry sector- IEC 61511 Standard, 2003, Parts 1–3, 1st edition.
  4. D. Kirkwood and Tibbs B., “Developments in SIL determination,” Computing & Control Engineering, vol. 16, no. 3, pp. 21–27, 2005. View at Publisher · View at Google Scholar
  5. S. Hauge, P. Hokstad, and T. Onshus, “The introduction of IEC 61511 in Norwegian offshore industry,” in Proceedings of the European Safety & Reliability International Conference (ESREL '01), pp. 483–490, Torino, Italy, September 2001.
  6. D. J. Smith and K. J. L. Simpson, Functional Safety: A Straightforward Guide to Applying IEC 61508 and Related Standards, Elsevier Butterworth-Heinemann, Oxford, UK, 2nd edition, 2004.
  7. S. Dean, “IEC 61508-Assessing the hazard and risk,” Sauf Consulting, April 1999, http://www.sauf.co.uk.
  8. P. Baybutt, “An improved risk graph approach for determination of safety integrity levels (SILs),” Process Safety Progress, vol. 26, no. 1, pp. 66–76, 2007. View at Publisher · View at Google Scholar
  9. W. K. Muhlbauer, Pipeline Risk Management Manual: Ideas, Techniques and Resources, Elsevier, Amsterdam, The Netherlands, 2004.
  10. L. A. Zadeh, “Outline of a new approach to the analysis of complex systems and decision processes,” IEEE Transactions on Systems, Man and Cybernetics, vol. 3, pp. 28–44, 1973. View at Google Scholar
  11. L. A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning—I,” Information Sciences, vol. 8, no. 3, pp. 199–249, 1975. View at Publisher · View at Google Scholar
  12. L. A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning—II,” Information Sciences, vol. 8, no. 4, pp. 301–357, 1975. View at Publisher · View at Google Scholar
  13. J. B. Bowles and C. E. Pelaez, “Fuzzy logic prioritization of failures in a system failure mode, effects and criticality analysis,” Reliability Engineering & System Safety, vol. 50, no. 2, pp. 203–213, 1995. View at Publisher · View at Google Scholar
  14. K. Xu, L. C. Tang, M. Xie, S. L. Ho, and M. L. Zhu, “Fuzzy assessment of FMEA for engine systems,” Reliability Engineering & System Safety, vol. 75, no. 1, pp. 17–29, 2002. View at Publisher · View at Google Scholar
  15. A. Pillay and J. Wang, “Modified failure mode and effects analysis using approximate reasoning,” Reliability Engineering & System Safety, vol. 79, no. 1, pp. 69–85, 2003. View at Publisher · View at Google Scholar
  16. A. C. F. Guimarães and C. M. F. Lapa, “Hazard and operability study using approximate reasoning in light-water reactors passive systems,” Nuclear Engineering and Design, vol. 236, no. 12, pp. 1256–1263, 2006. View at Publisher · View at Google Scholar
  17. A. C. F. Guimarães and C. M. F. Lapa, “Fuzzy inference to risk assessment on nuclear engineering systems,” Applied Soft Computing, vol. 7, no. 1, pp. 17–28, 2007. View at Publisher · View at Google Scholar
  18. A. S. Markowski, M. S. Mannan, and A. Bigoszewska, “Fuzzy logic for process safety analysis,” in Proceedings of the International Symposium of Process Safety Center, College Station, Tex, USA, October 2007.
  19. F. Redmill, “IEC 61508 - principles and use in the management of safety,” Computing & Control Engineering, vol. 9, no. 5, pp. 205–213, 1998. View at Publisher · View at Google Scholar
  20. K. T. Kosmowski, “Functional safety concept for hazardous systems and new challenges,” Journal of Loss Prevention in the Process Industries, vol. 19, no. 2-3, pp. 298–305, 2006. View at Publisher · View at Google Scholar
  21. W. G. Gulland, “Methods of determining safety integrity level (SIL) requirements-Pros and Con,” in Proceedings of the 12th Annual Safety-Critical Systems Symposium, pp. 105–122, Birmingham, UK, February 2004.
  22. L. Blackmore, “IEC 61508-Practical experience in increasing the effectiveness of SIL assessments,” 2000, ISA EXPO. View at Google Scholar
  23. D. W. Massaro, “Broadening the domain of the fuzzy logical model of perception,” in Cognition: Conceptual and Methodological Issues, H. L. Pick Jr., P. van den Broek, and D. C. Knill, Eds., pp. 51–84, American Psychological Association, Washington, DC, USA, 1992. View at Google Scholar
  24. S. A. Sandri, D. Dubois, and H. W. Kalfsbeek, “Elicitation, assessment, and pooling of expert judgments using possibility theory,” IEEE Transactions on Fuzzy Systems, vol. 3, no. 3, pp. 313–335, 1995. View at Publisher · View at Google Scholar
  25. L. A. Zadeh, “Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic,” Fuzzy Sets and Systems, vol. 90, no. 2, pp. 111–127, 1997. View at Publisher · View at Google Scholar
  26. L. Ormos and I. Ajtonyi, “Soft computing method for determining the safety of technological system by 1EC 61508,” in Proceedings of the 1st Romanian-Hungarian Joint Sympsiom on Applied Computational Inelligence (SACI '04), Timisoara, Romania, May 2004.
  27. C. Simon, M. Sallak, and J.-F. Aubry, “SIL allocation of SIS by aggregation of experts' opinions,” in Proceedings of the Safety and Reliability Conference (ESREL '07), Stavanger, Norway, June 2007.
  28. E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis with a fuzzy logic controller,” International Journal of Man-Machine Studies, vol. 7, no. 1, pp. 1–13, 1975. View at Google Scholar
  29. D. Dubois, H. Prade, and L. Ughetto, “Fuzzy logic, control engineering and artificial intelligence,” in Fuzzy Algorithms for Control, H. B. Verbruggen, H. J. Zimmerman, and R. Babuska, Eds., pp. 17–57, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999. View at Google Scholar
  30. D. Dubois and H. Prade, “The mean value of a fuzzy number,” Fuzzy Sets and Systems, vol. 24, no. 3, pp. 279–300, 1987. View at Publisher · View at Google Scholar