Table of Contents
Journal of Quality and Reliability Engineering
Volume 2014, Article ID 960649, 11 pages
http://dx.doi.org/10.1155/2014/960649
Research Article

Performance Investigation of CMM Measurement Quality Using Flick Standard

Engineering and Surface Metrology Department, National Institute for Standards (NIS), Giza 12211-136, Egypt

Received 6 May 2014; Accepted 17 June 2014; Published 17 July 2014

Academic Editor: Shey-Huei Sheu

Copyright © 2014 Salah H. R. Ali. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Quality of coordinate measuring machine (CMM) in dimension and form metrology is designed and performed at the NIS. The experimental investigation of CMM performance is developed by using reference Flick standard. The measurement errors of corresponding geometric evaluation algorithm (LSQ, ME, MC, and MI) and probe scanning speed (1, 2, 3, 4, and 5 mm/s) are obtained through repeated arrangement, comparison, and judgment. The experimental results show that the roundness error deviation can be evaluated effectively and exactly for CMM performance by using Flick standard. Some of influencing quantities for diameter and roundness form errors may dominate the results at all fitting algorithms under certain circumstances. It can be shown that the 2 mm/s probe speed gives smaller roundness error than 1, 3, 4, and 5 mm/s within 0.2 : 0.3 μm. It ensures that measurement at 2 mm/s is the best case to satisfy the high level of accuracy in the certain condition. Using Flick standard as a quality evaluation tool noted a high precision incremental in diameter and roundness form indication. This means a better transfer stability of CMM quality could be significantly improved. Moreover, some error formulae of data sets have been postulated to correlate the diameter and roundness measurements within the application range. Uncertainty resulting from CMM and environmental temperature has been evaluated and confirmed the quality degree of confidence in the proposed performance investigation.