Table of Contents
Journal of Quality and Reliability Engineering
Volume 2014 (2014), Article ID 987847, 16 pages
http://dx.doi.org/10.1155/2014/987847
Review Article

Reliability and Fatigue Analysis in Cantilever-Based MEMS Devices Operating in Harsh Environments

1Department of Electrical and Electronics Engineering, Universiti Teknologi, PETRONAS, 31750 Seri Iskandar, Tronoh, Perak, Malaysia
2Department of Physics, Kohat University of Science and Technology (KUST), Kohat 26000, Pakistan

Received 30 August 2013; Revised 1 December 2013; Accepted 1 December 2013; Published 12 January 2014

Academic Editor: Adiel Teixeira de Almeida

Copyright © 2014 Mohammad Tariq Jan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The microelectromechanical system (MEMS) is one of the most diversified fields of microelectronics; it is rated to be the most promising technology of modern engineering. MEMS can sense, actuate, and integrate mechanical and electromechanical components of micro- and nano sizes on a single silicon substrate using microfabrication techniques. MEMS industry is at the verge of transforming the semiconductor world into MEMS universe, apart from other hindrances; the reliability of these devices is the focal point of recent research. Commercialization is highly dependent on the reliability of these devices. MEMS requires a high level of reliability. Several technological factors, operating conditions, and environmental effects influencing the performances of MEMS devices must be completely understood. This study reviews some of the major reliability issues and failure mechanisms. Specifically, the fatigue in MEMS is a major material reliability issue resulting in structural damage, crack growth, and lifetime measurements of MEMS devices in the light of statistical distribution and fatigue implementation of Paris' law for fatigue crack accumulation under the influence of undesirable operating and environmental conditions.