Table of Contents
Journal of Respiratory Medicine
Volume 2014, Article ID 943219, 9 pages
Research Article

Smoke Exposure Has Transient Pulmonary and Systemic Effects in Wildland Firefighters

1School of Human Kinetics, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, Canada P3E 2C6
2Northern Ontario School of Medicine, Sudbury, ON, Canada P3E 2C6

Received 15 May 2013; Revised 4 November 2013; Accepted 19 November 2013; Published 30 January 2014

Academic Editor: Alia Bazzy-Asaad

Copyright © 2014 Sandra C. Dorman and Stacey A. Ritz. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Respiratory exposure to air pollutants is associated with cardiovascular morbidity and mortality and firefighters have been shown to be at an increased risk of work-related cardiovascular events. Wildland firefighters experience intermittent, intense exposure to biomass smoke. The aim of this study was to characterize the respiratory and systemic effects of smoke exposure in wildland firefighters. Seventeen seasonal firefighters from a northeastern Ontario community were recruited at the beginning of the fire season and baseline measurements obtained; postexposure measurements were made at various times within 16 d of firefighting. Spirometric measurements showed a transient decline in forced vital capacity within 7 d of fire exposure, not evident by 8–16 d. Induced sputum showed a significant increase in macrophages and epithelial cells within 7 d, with evidence that macrophages had internalized particles; such changes were not evident in the second week following exposure. Likewise, peripheral blood analysis revealed significant increases in erythrocytes, hemoglobin, monocytes, and platelets within the first week after fire exposure, which were diminished 8–16 d in postexposure group. We conclude that acute exposure to forest-fire smoke elicits transient inflammatory responses, both in the airways and systemically. Whether these changes contribute to the observed increased risk of cardiovascular events requires further study.