Table of Contents
Journal of Solar Energy
Volume 2013, Article ID 584283, 6 pages
Research Article

Localized Surface Plasmons Enhanced Light Transmission into c-Silicon Solar Cells

1Department of Electronic Science, University of Delhi, South Campus, Benito Juarez Road, New Delhi 110021, India
2Department of Physics, Motilal Nehru College, University of Delhi, Benito Juarez Road, New Delhi 110021, India
3Department of Electronics, Rajdhani College, University of Delhi, Raja Garden, New Delhi 110015, India

Received 30 March 2013; Revised 28 May 2013; Accepted 3 July 2013

Academic Editor: Haricharan S. Reehal

Copyright © 2013 Y. Premkumar Singh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The paper investigates the light incoupling into c-Si solar cells due to the excitation of localized surface plasmon resonances in periodic metallic nanoparticles by finite-difference time-domain (FDTD) technique. A significant enhancement of AM1.5G solar radiation transmission has been demonstrated by depositing nanoparticles of various metals on the upper surface of a semi-infinite Si substrate. Plasmonic nanostructures located close to the cell surface can scatter incident light efficiently into the cell. Al nanoparticles were found to be superior to Ag, Cu, and Au nanoparticles due to the improved transmission of light over almost the entire solar spectrum and, thus, can be a potential low-cost plasmonic metal for large-scale implementation of solar cells.