Table of Contents Author Guidelines Submit a Manuscript
Journal of Solar Energy
Volume 2016, Article ID 5187317, 10 pages
http://dx.doi.org/10.1155/2016/5187317
Review Article

Why Do Electricity Policy and Competitive Markets Fail to Use Advanced PV Systems to Improve Distribution Power Quality?

1School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
2Sandia National Laboratories, Albuquerque, NM 87185, USA

Received 23 March 2016; Revised 23 June 2016; Accepted 27 June 2016

Academic Editor: Paulo Fernandes

Copyright © 2016 Mark P. McHenry et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. P. McHenry, “Technical and governance considerations for advanced metering infrastructure/smart meters: technology, security, uncertainty, costs, benefits, and risks,” Energy Policy, vol. 59, pp. 834–842, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. M. P. McHenry, “Policy options when giving negative externalities market value: clean energy policymaking and restructuring the Western Australian energy sector,” Energy Policy, vol. 37, no. 4, pp. 1423–1431, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. M. P. McHenry, M. Schultz, and K. O'Mara, “Wholesale electricity markets and electricity networks: balancing supply reliability, technical governance, and market trading in the context of Western Australian energy disaggregation and marketisation,” in Advances in Energy Research, Volume 5, A. R. McAdams, Ed., Nova Science Publishers, Hauppauge, NY, USA, 2011. View at Google Scholar
  4. M. P. McHenry, “Are small-scale grid-connected photovoltaic systems a cost-effective policy for lowering electricity bills and reducing carbon emissions? A technical, economic, and carbon emission analysis,” Energy Policy, vol. 45, pp. 64–72, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. M. P. McHenry, “Small-scale (≤6 kWe) stand-alone and grid-connected photovoltaic, wind, hydroelectric, biodiesel, and wood gasification system's simulated technical, economic, and mitigation analyses for rural regions in Western Australia,” Renewable Energy, vol. 38, no. 1, pp. 195–205, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Reichelstein and M. Yorston, “The prospects for cost competitive solar PV power,” Energy Policy, vol. 55, pp. 117–127, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Monjas-Barroso and J. Balibrea-Iniesta, “Valuation of projects for power generation with renewable energy: a comparative study based on real regulatory options,” Energy Policy, vol. 55, pp. 335–352, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Sayeef, S. Heslop, D. Cornforth et al., Solar Intermittency: Australia's Clean Energy Challenge: Characterising the Effect of High Penetration Solar Intermittency on Australian Electricity Networks, CSIRO, Australian Solar Institute, Canberra, Australia, 2012.
  9. V. Lazarov, Z. Zarkov, H. Kanchev, L. Stoyanov, and B. Francois, “Compensation of power fluctuations in PV systems with supercapacitors,” Elektrotechnica & Elektronica, vol. 47, pp. 48–55, 2012. View at Google Scholar
  10. N. Kakimoto, H. Satoh, S. Takayama, and K. Nakamura, “Ramp-rate control of photovoltaic generator with electric double-layer capacitor,” IEEE Transactions on Energy Conversion, vol. 24, no. 2, pp. 465–473, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Johnson, B. Schenkman, A. Ellis et al., Initial Operating Experience of the 1.2-MW La Ola Photovoltaic System, Sandia National Laboratories, Albuquerque, NM, USA, 2011.
  12. J. Johnson, B. Schenkman, A. Ellis, J. Quiroz, and C. Lenox, “Initial operating experience of the 1.2-MW La Ola photovoltaic system,” in Proceedings of the IEEE 38th Photovoltaic Specialists Conference (PVSC '12), pp. 1–6, IEEE, Austin, Tex, USA, June 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. X. Zeng, K. K. Li, W. L. Chan, and X. Yin, “Some novel techniques for improving power quality in distribution networks,” in Proceedings of the IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies (DRPT 0'4), pp. 306–310, Hong Kong, April 2004. View at Scopus
  14. H. Tian, F. Gao, and C. Ma, “Novel low voltage ride through strategy of single-stage grid-tied photovoltaic inverter with supercapacitor coupled,” in Proceedings of the IEEE 7th International Power Electronics and Motion Control Conference (IPEMC '12), pp. 1188–1192, Harbin, China, June 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. F. A. Vaiwan, Voltage Control and Voltage Stability of Power Distribution Systems in the Presence of Distributed Generation, Chalmers University of Technology, Göteborg, Sweden, 2008.
  16. International Electrotechnical Commission (IEC), Communication Networks and Systems for Power Utility Automation—Part 90-7: Object Models for Power Converters in Distributed Energy Resources (DER) Systems, IEC, Geneva, Switzerland, 2013.
  17. D. Roberson, J. F. Ellison, D. Bhatnagar et al., Performance Assessment of the PNM Prosperity Electricity Storage Project. A Study for the DOE Energy Storage Systems Program, Sandia National Laboratories, Livermore, Calif, USA, 2014.
  18. S. Willard, B. Arellano, J. Hawkins et al., A Case Study on the Demonstration of Storage for Simultaneous Voltage Smoothing and Peak Shifting, The Electric Power Research Institute, Palo Alto, Calif, USA, 2012.
  19. M. P. McHenry, “A technical, economic, and greenhouse gas emission analysis of a homestead-scale grid-connected and stand-alone photovoltaic and diesel systems, against electricity network extension,” Renewable Energy, vol. 38, no. 1, pp. 126–135, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Gao, R. A. Dougal, S. Liu, and A. P. Iotova, “Parallel-connected solar PV system to address partial and rapidly fluctuating shadow conditions,” IEEE Transactions on Industrial Electronics, vol. 56, no. 5, pp. 1548–1556, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. W. M. Rohouma, I. M. Molokhia, and A. H. Esuri, “Comparative study of different PV modules configuration reliability,” Desalination, vol. 209, no. 1–3, pp. 122–128, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. H.-R. Seo, G.-H. Kim, S.-Y. Kim et al., “Power quality control strategy for grid-connected renewable energy sources using PV array and supercapacitor,” in Proceedings of the International Conference on Electrical Machines and Systems (ICEMS '10), pp. 437–441, IEEE, Incheon, South Korea, October 2010. View at Scopus
  23. Independent Market Operator Western Australia, 2008 Statement of Opportunities Report, Independent Market Operator, Perth, Australia, 2008.
  24. Independent Market Operator (IMO), Statement of Opportunities, Independent Market Operator (IMO), Perth, Australia, 2009.
  25. A. Morton, S. Cowdroy, and D. Stevens, “Maximising the penetration of intermittent generation in the SWIS,” Econnect Project 1465, Econnect, Melbourne, Australia, 2005. View at Google Scholar
  26. A. Kazemi and H. Andami, “FACTS devices in deregulated electric power systems: a review,” in Proceedings of the IEEE International Conference on Electric Utility Deregulation, Restructuring and Power Technologies (DRPT '04), vol. 1, pp. 337–342, Hong Kong, April 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. X.-P. Zhang, C. Rehtanz, and B. Pal, Flexible AC Transmission Systems: Modelling and Control, Springer, Berlin, Germany, 2006.
  28. S. C. Srivastava and R. K. Verma, “Impact of FACTS devices on transmission pricing in a de-regulated electricity market,” in Proceedings of the International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT '00), pp. 642–648, London, UK, April 2000. View at Publisher · View at Google Scholar
  29. Victorian Auditor General, Towards a ‘Smart Grid’—The Roll-Out of Advanced Metering Infrastructure, Victorian Auditor-General's Office, Melbourne, Australia, 2009.
  30. Electric Power Research Institute (EPRI), Accuracy of Digital Electricity Meters, Electric Power Research Institute (EPRI), Palo Alto, Calif, USA, 2010.
  31. J. M. Miller and G. Sartorelli, “Battery and ultracapacitor combinations—where should the converter go?” in Proceedings of the IEEE Vehicle Power and Propulsion Conference (VPPC '10), pp. 1–7, IEEE, Lille, France, September 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Brunelli, C. Moser, L. Thiele, and L. Benini, “Design of a solar-harvesting circuit for batteryless embedded systems,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 11, pp. 2519–2528, 2009. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  33. S. Manfredi and M. Pagano, “On the use of ultracapacitor to support microgrid photovoltaic power system,” in Proceedings of the 3rd International Conference on Clean Electrical Power: Renewable Energy Resources Impact (ICCEP '11), pp. 491–497, Ischia, Italy, June 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Robbins and J. M. Hawkins, “Powering telecommunications network interfaces using photovoltaic cells and supercapacitors,” in Proceedings of the 19th International Telecommunications Energy Conference (INTELEC '97), pp. 523–528, IEEE, Melbourne, Australia, October 1997. View at Scopus
  35. M. Das, I. Das, N. K. Bhattacharyya, D. Mukherjee, and H. Saha, “Application of supercapacitor to power small electronic appliances,” IOSR Journal of Electrical and Electronics Engineering, vol. 4, no. 3, pp. 28–32, 2013. View at Publisher · View at Google Scholar
  36. N. Li, J. Zhang, and Y. Zhong, “A novel charging control scheme for super capacitor energy storage in photovoltaic generation system,” in Proceedings of the 3rd International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT '08), pp. 2671–2675, IEEE, Nanjuing, China, April 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Zhong, J. Zhang, G. Li, and X. Yuan, “Mathematical model of new bi-directional DC-AC-DC converter for supercapacitor energy storage system in photovoltaic generation,” in Proceedings of the 3rd International Conference on Deregulation and Restructuring and Power Technologies (DRPT '08), pp. 2686–2690, Nanjuing, China, April 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. W. Marańda and M. Piotrowicz, “Short-time energy buffering for photovoltaic system,” in Proceedings of the 17th International Conference Mixed Design of Integrated Circuits and Systems (MIXDES '10), pp. 525–528, Wrocław, Poland, June 2010. View at Scopus
  39. A. Fahad, T. Soyata, T. Wang, G. Sharma, W. Heinzelman, and K. Shen, “SOLARCAP: super capacitor buffering of solar energy for self-sustainable field systems,” in Proceedings of the IEEE International SOC Conference (SOCC '12), pp. 236–241, IEEE, Niagara Falls, NY, USA, September 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. A. K. Srivastava, A. A. Kumar, and N. N. Schulz, “Impact of distributed generations with energy storage devices on the electric grid,” IEEE Systems Journal, vol. 6, no. 1, pp. 110–117, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. D. Dondi, A. Bertacchini, L. Larcher, P. Pavan, D. Brunelli, and L. Benini, “A solar energy harvesting circuit for low power applications,” in Proceedings of the IEEE International Conference on Sustainable Energy Technologies (ICSET '08), pp. 945–949, Singapore, November 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. Electric Power Research Institute (EPRI), Common Functions for Smart Inverters, Version 3, Electric Power Research Institute (EPRI), Palo Alto, Calif, USA, 2014.
  43. M. Vandenbergh, S. Beverungen, B. Buchholz et al., “Expandable hybrid systems for multi-user mini-grids,” in Proceedings of the 17th European Photovoltaic Solar Energy Conference (EPVSEC '01), Munich, Germany, 2001.
  44. H. Patel and V. Agarwal, “Maximum power point tracking scheme for PV systems operating under partially shaded conditions,” IEEE Transactions on Industrial Electronics, vol. 55, no. 4, pp. 1689–1698, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. R. E. H. Sims, R. N. Schock, A. Adegbululgbe et al., Energy Supply, Cambridge University Press, Cambridge, UK, 2007.