Table of Contents
Journal of Soft Matter
Volume 2013, Article ID 732157, 7 pages
http://dx.doi.org/10.1155/2013/732157
Research Article

An Elastin-Derived Self-Assembling Polypeptide

Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100 Potenza, Italy

Received 26 April 2013; Accepted 27 May 2013

Academic Editor: Eri Yoshida

Copyright © 2013 Antonietta Pepe and Brigida Bochicchio. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. C. Rodriguez-Cabello, L. Martin, A. Girotti, C. Garca-Arévalo, F. J. Arias, and M. Alonso, “Emerging applications of multifunctional elastin-like recombinamers,” Nanomedicine, vol. 6, no. 1, pp. 111–122, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. D. L. Nettles, A. Chilkoti, and L. A. Setton, “Applications of elastin-like polypeptides in tissue engineering,” Advanced Drug Delivery Reviews, vol. 62, no. 15, pp. 1479–1485, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. J. E. Wagenseil and R. P. Mecham, “New insights into elastic fiber assembly,” Birth Defects Research C, vol. 81, no. 4, pp. 229–240, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Pepe, B. Bochicchio, and A. M. Tamburro, “Supramolecular organization of elastin and elastin-related nanostructured biopolymers,” Nanomedicine, vol. 2, no. 2, pp. 203–218, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Miao, C. M. Bellingham, R. J. Stahl, E. E. Sitarz, C. J. Lane, and F. W. Keeley, “Sequence and structure determinants for the self-aggregation of recombinant polypeptides modeled after human elastin,” Journal of Biological Chemistry, vol. 278, no. 49, pp. 48553–48562, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Pepe, D. Guerra, B. Bochicchio et al., “Dissection of human tropoelastin: supramolecular organization of polypeptide sequences coded by particular exons,” Matrix Biology, vol. 24, no. 2, pp. 96–109, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Bochicchio and A. Pepe, “Role of polyproline II conformation in human tropoelastin structure,” Chirality, vol. 23, no. 9, pp. 694–702, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. J. A. Foster, L. Rubin, and H. M. Kagan, “Isolation and characterization of cross linked peptides from elastin,” Journal of Biological Chemistry, vol. 249, no. 19, pp. 6191–6196, 1974. View at Google Scholar · View at Scopus
  9. A. M. Tamburro, A. Pepe, and B. Bochicchio, “Localizing α-helices in human tropoelastin: assembly of the elastin ‘puzzle’,” Biochemistry, vol. 45, no. 31, pp. 9518–9530, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Tintar, V. Samouillan, J. Dandurand et al., “Human tropoelastin sequence: dynamics of polypeptide coded by Exon 6 in solution,” Biopolymers, vol. 91, no. 11, pp. 943–952, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. H. LeVine III, “Quantification of β-sheet amyloid fibril structures with thioflavin T,” Methods in Enzymology, vol. 309, pp. 274–284, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. W. E. Klunk, R. F. Jacob, and R. P. Mason, “Quantifying amyloid by congo red spectral shift assay,” Methods in Enzymology, vol. 309, pp. 285–305, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Bochicchio and A. M. Tamburro, “Polyproline II structure in proteins: identification by chiroptical spectroscopies, stability, and functions,” Chirality, vol. 14, no. 10, pp. 782–792, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. A. F. Drake, G. Siligardi, and W. A. Gibbons, “Reassessment of the electronic circular dichroism criteria for random coil conformations of poly(l-lysine) and the implications for protein folding and denaturation studies,” Biophysical Chemistry, vol. 31, no. 1-2, pp. 143–146, 1988. View at Google Scholar · View at Scopus
  15. R. W. Woody, “Circular dichroism and conformation of unordered peptides,” in Advances in Biophysical Chemistry, L. A. Bush, Ed., vol. 2, pp. 37–79, JAI Press, Greenwich, Conn, USA, 1992. View at Google Scholar
  16. A. Perczel, M. Hollosi, P. Sandor, and G. D. Fasman, “The evaluation of type I and type II β-turn mixtures. Circular dichroism, NMR and molecular dynamics studies,” International Journal of Peptide and Protein Research, vol. 41, no. 3, pp. 223–236, 1993. View at Google Scholar · View at Scopus
  17. S. Cai and B. R. Singh, “A distinct utility of the amide III infrared band for secondary structure estimation of aqueous protein solutions using partial least squares methods,” Biochemistry, vol. 43, no. 9, pp. 2541–2549, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Martino, A. Bavoso, V. Guantieri, A. Coviello, and A. M. Tamburro, “On the occurrence of polyproline II structure in elastin,” Journal of Molecular Structure, vol. 519, no. 1–3, pp. 173–189, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Hollosi, Z. Majer, A. Z. Ronai et al., “CD and Fourier transform ir spectroscopic studies of peptides. II. Detection of β-turns in linear peptides,” Biopolymers, vol. 34, no. 2, pp. 177–185, 1994. View at Google Scholar · View at Scopus
  20. J. Bandekar, “Amide modes and protein conformation,” Biochimica et Biophysica Acta, vol. 1120, no. 2, pp. 123–143, 1992. View at Publisher · View at Google Scholar · View at Scopus
  21. P. I. Haris and D. Chapman, “The conformational analysis of peptides using Fourier transform IR spectroscopy,” Biopolymers, vol. 37, no. 4, pp. 251–263, 1995. View at Publisher · View at Google Scholar · View at Scopus
  22. W. E. Klunk, R. F. Jacob, and R. P. Mason, “Quantifying amyloid by congo red spectral shift assay,” Methods in Enzymology, vol. 309, pp. 285–305, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. A. A. Maskevich, V. I. Stsiapura, V. A. Kuzmitsky et al., “Spectral properties of thioflavin T in solvents with different dielectric properties and in a fibril-incorporated form,” Journal of Proteome Research, vol. 6, no. 4, pp. 1392–1401, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. H. LeVine III, “Stopped-flow kinetics reveal multiple phases of thioflavin T binding to Alzheimer β(140) amyloid fibrils,” Archives of Biochemistry and Biophysics, vol. 342, no. 2, pp. 306–316, 1997. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Naiki, K. Higuchi, M. Hosokawa, and T. Takeda, “Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavine T,” Analytical Biochemistry, vol. 177, no. 2, pp. 244–249, 1989. View at Google Scholar · View at Scopus
  26. A. Pepe, R. Flamia, D. Guerra et al., “Exon 26-coded polypeptide: an isolated hydrophobic domain of human tropoelastin able to self-assemble in vitro,” Matrix Biology, vol. 27, no. 5, pp. 441–450, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. A. M. Tamburro, A. Pepe, B. Bochicchio, D. Quaglino, and I. P. Ronchetti, “Supramolecular amyloid-like assembly of the polypeptide sequence coded by exon 30 of human tropoelastin,” Journal of Biological Chemistry, vol. 280, no. 4, pp. 2682–2690, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. D. H. Le, R. Hanamura, D.-H. Pham et al., “Self-assembly of elastin-mimetic double hydrophobic polypeptides,” Biomacromolecules, vol. 14, no. 4, pp. 1028–1034, 2013. View at Publisher · View at Google Scholar
  29. S. E. Grieshaber, T. Nie, C. Yan et al., “Assembly properties of an alanine-rich, lysine-containing peptide and the formation of peptide/polymer hybrid hydrogels,” Macromolecular Chemistry and Physics, vol. 212, no. 3, pp. 229–239, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. A. M. Tamburro, M. Lorusso, N. Ibris, A. Pepe, and B. Bochicchio, “Investigating by circular dichroism some amyloidogenic elastin-derived polypeptides,” Chirality, vol. 22, no. 1, pp. E56–E66, 2010. View at Publisher · View at Google Scholar · View at Scopus