Table of Contents
Journal of Soft Matter
Volume 2014 (2014), Article ID 498563, 6 pages
http://dx.doi.org/10.1155/2014/498563
Research Article

Burst Diaphragms Based on Carbon Black/Silica Hybrid Filler Reinforced Nitrile Rubber Compounds

1Polymer Science & Technology Division, Research Institute of Petroleum Industry, P.O. Box 14115-143, Tehran, Iran
2Process Development Department, Research Institute of Petroleum Industry, P.O. Box 14115-143, Tehran, Iran

Received 23 June 2014; Revised 25 August 2014; Accepted 25 August 2014; Published 2 September 2014

Academic Editor: Eri Yoshida

Copyright © 2014 Ali Asghar Davoodi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Lee, J. Hong, D. W. Park, and S. E. Shim, “Production of carbon black/silica composite particles by adsorption of poly(vinyl pyrrolidone),” Macromolecular Research, vol. 17, no. 9, pp. 718–720, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. D. R. Hwang, J. Hong, J. Lee, and S. E. Shim, “In-situ synthesis of PS/(-)silica composite particles in dispersion polymerization using an (±) amphoteric initiator,” Macromolecular Research, vol. 16, no. 4, pp. 329–336, 2008. View at Publisher · View at Google Scholar
  3. H. Atashi, K. Sobhan Manesh, and M. Shiva, “Improvement of physical and mechanical properties of butadiene rubber with silica/shane reinforcement system,” Iranian Journal of Polymer Science and Technology, vol. 17, no. 5, pp. 281–290, 2004. View at Google Scholar
  4. S. Mihara, Reactive Processing of Silica-Reinforced Tire Rubber: New Insight into the Time-and Temperature-Dependence of Silica Rubber Interaction, University of Twente, 2009.
  5. M.-J. Wang, S. Wolff, and J.-B. Donnet, “Filler-elastomer interactions. Part I. Silica surface energies and interactions with model compounds,” Rubber Chemistry and Technology, vol. 64, no. 4, pp. 559–576, 1991. View at Publisher · View at Google Scholar · View at Scopus
  6. S.-S. Choi, B.-H. Park, and H. Song, “Influence of filler type and content on properties of styrene-butadiene rubber (SBR) compound reinforced with carbon black or silica,” Polymers for Advanced Technologies, vol. 15, no. 3, pp. 122–127, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Rattanasom, T. Saowapark, and C. Deeprasertkul, “Reinforcement of natural rubber with silica/carbon black hybrid filler,” Polymer Testing, vol. 26, no. 3, pp. 369–377, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. M.-J. Wang, Y. Kutsovsky, P. Zhang, L. J. Murphy, S. Laube, and K. Mahmud, “New generation carbon-silica dual phase filler part I. Characterization and application to passenger tire,” Rubber Chemistry and Technology, vol. 75, no. 2, pp. 247–263, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. M. H. R. Ghoreishy, S. Taghvaei, and R. Z. Mehrabian, “The effect of silica/carbon black filler systems on the fatigue properties of the tread compound in passenger tires,” Science and Technology, vol. 24, no. 4, pp. 329–337, 2011. View at Google Scholar
  10. T. Saowapark, Reinforcement of Natural Rubber with Silica/Carbon Black Hybrid Filler, Mahidol University, 2005.
  11. H. Atashi, K. Sobhan Manesh, and M. Shiva, “Assessments on the tear resistance improvement mechanisms in the carbon black/silica/silane reinforcement systems,” Iranian Journal of Polymer Science and Technology, vol. 18, no. 2, pp. 75–80, 2005. View at Google Scholar
  12. M. Abtahi and G. R. Bakhshandeh, “Effect of different coupling agents on mechanical properties of silica filled Reinforced EPDM rubber compounds,” Iranian Journal of Polymer Science and Technology, vol. 16, no. 6, pp. 349–355, 2004. View at Google Scholar
  13. N. Z. Noriman and H. Ismail, “Effect of carbon black/silica hybrid filler on thermal properties, fatigue life, and natural weathering of SBR/recycled NBR blends,” International Journal of Polymeric Materials and Polymeric Biomaterials, vol. 62, no. 5, pp. 252–259, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. H.-E. Tan, S. Wolff, M. Haddeman, H. P. Grewatta, and M.-J. Wang, “Filler-elastomer interactions. Part IX. performance of silicas in polar elastomers,” Rubber Chemistry and Technology, vol. 66, no. 4, pp. 594–604, 1993. View at Publisher · View at Google Scholar · View at Scopus
  15. S. S. Choi, “Improvement of properties of silica-filled styrenebutadiene rubber compounds using acrylonitrilebutadiene rubber,” Journal of Applied Polymer Science, vol. 79, no. 6, pp. 1127–1133, 2001. View at Google Scholar
  16. S. S. Choi, “Properties of silica-filled styrene-butadiene rubber compounds containing acrylonitrile-butadiene rubber: the influence of the acrylonitrile-butadiene rubber type,” Journal of Applied Polymer Science, vol. 85, no. 2, pp. 385–393, 2002. View at Google Scholar
  17. M.-J. Wang, “Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates,” Rubber Chemistry and Technology, vol. 71, no. 3, pp. 520–589, 1998. View at Publisher · View at Google Scholar