Table of Contents
Journal of Signal Transduction
Volume 2012 (2012), Article ID 460842, 8 pages
http://dx.doi.org/10.1155/2012/460842
Research Article

Commitment of Satellite Cells Expressing the Calcium Channel α2δ1 Subunit to the Muscle Lineage

Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago, 835 South Wolcott Avenue, Chicago, IL 60612, USA

Received 15 August 2012; Accepted 1 November 2012

Academic Editor: Herman P. Spaink

Copyright © 2012 Tammy Tamayo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Mauro, “Satellite cell of skeletal muscle fibers,” The Journal of Biophysical and Biochemical Cytology, vol. 9, pp. 493–495, 1961. View at Google Scholar · View at Scopus
  2. A. Asakura, M. Komaki, and M. A. Rudnicki, “Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation,” Differentiation, vol. 68, no. 4-5, pp. 245–253, 2001. View at Google Scholar · View at Scopus
  3. S. Kuang and M. A. Rudnicki, “The emerging biology of satellite cells and their therapeutic potential,” Trends in Molecular Medicine, vol. 14, no. 2, pp. 82–91, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Tanabe, K. G. Beam, J. A. Powell, and S. Numa, “Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA,” Nature, vol. 328, pp. 313–318, 1988. View at Google Scholar
  5. H. Hibino, R. Pironkova, O. Onwumere et al., “Direct interaction with a nuclear protein and regulation of gene silencing by a variant of the Ca2+-channel β4 subunit,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 1, pp. 307–312, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Zhang, Y. Yamada, M. Fan, S. D. Bangaru, B. Lin, and J. Yang, “The β subunit of voltage-gated Ca2+ channels interacts with and regulates the activity of a novel isoform of Pax6,” Journal of Biological Chemistry, vol. 285, no. 4, pp. 2527–2536, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Taylor, T. Zhang, L. Messi et al., “The Cavβ1 subunit regulates gene expression in muscle progenitor cells,” Biophysical Journal, vol. 102, no. 3, article 365a, 2012. View at Publisher · View at Google Scholar
  8. K. García, T. Nabhani, and J. García, “The calcium channel α2/δ1 subunit is involved in extracellular signalling,” Journal of Physiology, vol. 586, no. 3, pp. 727–738, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. J. García, “The calcium channel α2/δ1 subunit interacts with ATP5b in the plasma membrane of developing muscle cells,” American Journal of Physiology, vol. 301, no. 1, pp. C44–C52, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. B. E. Flucher, J. L. Phillips, and J. A. Powell, “Dihydropyridine receptor α subunits in normal and dysgenic muscle in vitro: expression of α1 is required for proper targeting and distribution of α2,” Journal of Cell Biology, vol. 115, no. 5, pp. 1345–1356, 1991. View at Publisher · View at Google Scholar · View at Scopus
  11. K. J. Alden and J. García, “Dissociation of charge movement from calcium release and calcium current in skeletal myotubes by gabapentin,” American Journal of Physiology, vol. 283, no. 3, pp. C941–C949, 2002. View at Google Scholar · View at Scopus
  12. J. Vandesompele, K. De Preter, F. Pattyn et al., “Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes,” Genome Biology, vol. 3, no. 7, 2002. View at Google Scholar · View at Scopus
  13. L. Grajales, J. García, and L. D. Geenen, “Induction of cardiac myogenic lineage development differs between mesenchymal and satellite cells and is accelerated by bone morphogenetic protein-4,” Journal of Molecular and Cellular Cardiology, vol. 53, no. 3, pp. 382–391, 2012. View at Google Scholar
  14. J. R. Beauchamp, L. Heslop, D. S. W. Yu et al., “Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells,” Journal of Cell Biology, vol. 151, no. 6, pp. 1221–1233, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Ieronimakis, G. Balasundaram, S. Rainey, K. Srirangam, Z. Yablonka-Reuveni, and M. Reyes, “Absence of CD34 on murine skeletal muscle satellite cells marks a reversible state of activation during acute injury,” PLoS oNE, vol. 5, no. 6, p. e10920, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Nabhani, T. Shah, and J. García, “Skeletal muscle cells express different isoforms of the calcium channel α2/δ subunit,” Cell Biochemistry and Biophysics, vol. 42, no. 1, pp. 13–20, 2005. View at Google Scholar · View at Scopus
  17. M. E. Morton and S. C. Froehner, “The α1 and α2 polypeptides of the dihydropyridine-sensitive calcium channel differ in developmental expression and tissue distribution,” Neuron, vol. 2, no. 5, pp. 1499–1506, 1989. View at Google Scholar · View at Scopus
  18. M. Kottlors and J. Kirschner, “Elevated satellite cell number in Duchenne muscular dystrophy,” Cell and Tissue Research, vol. 340, no. 3, pp. 541–548, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. B. E. Flucher and C. Franzini-Armstrong, “Formation of junctions involved in excitation-contraction coupling in skeletal and cardiac muscle,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 15, pp. 8101–8106, 1996. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Protasi, C. Franzini-Armstrong, and B. E. Flucher, “Coordinated incorporation of skeletal muscle dihydropyridine receptors and ryanodine receptors in peripheral couplings of BC3H1 cells,” Journal of Cell Biology, vol. 137, no. 4, pp. 859–870, 1997. View at Publisher · View at Google Scholar · View at Scopus