Table of Contents
Journal of Signal Transduction
Volume 2012, Article ID 529179, 7 pages
http://dx.doi.org/10.1155/2012/529179
Review Article

Pivotal Role of AKAP12 in the Regulation of Cellular Adhesion Dynamics: Control of Cytoskeletal Architecture, Cell Migration, and Mitogenic Signaling

Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA

Received 24 February 2012; Accepted 24 May 2012

Academic Editor: Claire Brown

Copyright © 2012 Shin Akakura and Irwin H. Gelman. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. L. Gardel, I. C. Schneider, Y. Aratyn-Schaus, and C. M. Waterman, “Mechanical integration of actin and adhesion dynamics in cell migration,” Annual Review of Cell and Developmental Biology, vol. 26, pp. 315–333, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. W. Wong and J. D. Scott, “AKAP signalling complexes: focal points in space and time,” Nature Reviews Molecular Cell Biology, vol. 5, no. 12, pp. 959–970, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. A. K. Howe, “Cross-talk between calcium and protein kinase A in the regulation of cell migration,” Current Opinion in Cell Biology, vol. 23, no. 5, pp. 554–561, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Larsson, “Protein kinase C and the regulation of the actin cytoskeleton,” Cellular Signalling, vol. 18, no. 3, pp. 276–284, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. I. H. Gelman, “The role of SSeCKS/gravin/AKAP12 scaffolding proteins in the spaciotemporal control of signaling pathways in oncogenesis and development,” Frontiers in Bioscience, vol. 7, pp. d1782–1797, 2002. View at Google Scholar · View at Scopus
  6. B. J. Frankfort and I. H. Gelman, “Identification of novel cellular genes transcriptionally suppressed by v-src,” Biochemical and Biophysical Research Communications, vol. 206, no. 3, pp. 916–926, 1995. View at Publisher · View at Google Scholar · View at Scopus
  7. X. Lin, P. J. Nelson, B. Frankfort, E. Tombler, R. Johnson, and I. H. Gelman, “Isolation and characterization of a novel mitogenic regulatory gene, 322, which is transcriptionally suppressed in cells transformed by src and ras,” Molecular and Cellular Biology, vol. 15, no. 5, pp. 2754–2762, 1995. View at Google Scholar · View at Scopus
  8. S. B. Cohen, A. Waha, I. H. Gelman, and P. K. Vogt, “Expression of a down-regulated target, SSeCKS, reverses v-Jun-induced transformation of 10T1/2 murine fibroblasts,” Oncogene, vol. 20, no. 2, pp. 141–146, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Chapline, B. Mousseau, K. Ramsay et al., “Identification of a major protein kinase C-binding protein and substrate in rat embryo fibroblasts: decreased expression in transformed cells,” Journal of Biological Chemistry, vol. 271, no. 11, pp. 6417–6422, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. W. Xia, P. Unger, L. Miller, P. J. Nelson, and I. H. Gelman, “The Src-suppressed C kinase substrate, SSeCKS, is a potential metastasis inhibitor in prostate cancer,” Cancer Research, vol. 61, no. 14, pp. 5644–5651, 2001. View at Google Scholar · View at Scopus
  11. P. J. Nelson, K. Moissoglu, J. Vargas Jr., P. E. Klotman, and I. H. Gelman, “Involvement of the protein kinase C substrate, SSeCKS, in the actin-based stellate morphology of mesangial cells,” Journal of Cell Science, vol. 112, no. 3, pp. 361–370, 1999. View at Google Scholar · View at Scopus
  12. S. R. Coats, J. W. Covington, M. Su et al., “SSeCKS gene expression in vascular smooth muscle cells: regulation by angiotensin II and a potential role in the regulation of PAI-1 gene expression,” Journal of Molecular and Cellular Cardiology, vol. 32, no. 12, pp. 2207–2219, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. P. J. Nelson and I. H. Gelman, “Cell-cycle regulated expression and serine phosphorylation of the myristylated protein kinase C substrate, SSeCKS: correlation with culture confluency, cell cycle phase and serum response,” Molecular and Cellular Biochemistry, vol. 175, no. 1-2, pp. 233–241, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. I. H. Gelman, E. Tombler, and J. Vargas Jr., “A role for SSeCKS, a major protein kinase C substrate with tumour suppressor activity, in cytoskeletal architecture, formation of migratory processes, and cell migration during embryogenesis,” Histochemical Journal, vol. 32, no. 1, pp. 13–26, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. W. Xia and I. H. Gelman, “Mitogen-induced, FAK-dependent tyrosine phosphorylation of the SSeCKS scaffolding protein,” Experimental Cell Research, vol. 277, no. 2, pp. 139–151, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. X. Lin, E. Tombler, P. J. Nelson, M. Ross, and I. H. Gelman, “A novel src- and ras-suppressed protein kinase C substrate associated with cytoskeletal architecture,” Journal of Biological Chemistry, vol. 271, no. 45, pp. 28430–28438, 1996. View at Publisher · View at Google Scholar · View at Scopus
  17. J. B. Nauert, T. M. Klauck, L. K. Langeberg, and J. D. Scott, “Gravin, an autoantigen recognized by serum from myasthenia gravis patients, is a kinase scaffold protein,” Current Biology, vol. 7, no. 1, pp. 52–62, 1997. View at Google Scholar · View at Scopus
  18. L.-W. Guo, L. Gao, J. Rothschild, B. Su, and I. H. Gelman, “Control of protein kinase C activity, phorbol ester-induced cytoskeletal remodeling, and cell survival signals by the scaffolding protein SSeCKS/GRAVIN/AKAP12,” Journal of Biological Chemistry, vol. 286, no. 44, pp. 38356–38366, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Chapline, J. Cottom, H. Tobin, J. Hulmes, J. Crabb, and S. Jaken, “A major, transformation-sensitive PKC-binding protein is also a PKC substrate involved in cytoskeletal remodeling,” Journal of Biological Chemistry, vol. 273, no. 31, pp. 19482–19489, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. X. Lin and I. H. Gelman, “Reexpression of the major protein kinase C substrate, SSeCKS, suppresses v-src-induced morphological transformation and tumorigenesis,” Cancer Research, vol. 57, no. 11, pp. 2304–2312, 1997. View at Google Scholar · View at Scopus
  21. B. Su, Y. Bu, D. Engelberg, and I. H. Gelman, “SSeCKS/gravin/AKAP12 inhibits cancer cell invasiveness and chemotaxis by suppressing a protein kinase C Raf/MEK/ERK pathway,” Journal of Biological Chemistry, vol. 285, no. 7, pp. 4578–4586, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Busch, D. Camacho-Trullio, Z. Rogon et al., “Gene network dynamics controlling keratinocyte migration,” Molecular Systems Biology, vol. 4, article 199, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Piontekt and R. Brandt, “Differential and regulated binding of cAMP-dependent protein kinase and protein kinase C isoenzymes to gravin in human model neurons. Evidence that gravin provides a dynamic platform for the localization of kinases during neuronal development,” Journal of Biological Chemistry, vol. 278, no. 40, pp. 38970–38979, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. X. Yan, M. Walkiewicz, J. Carlson, L. Leiphon, and B. Grove, “Gravin dynamics regulates the subcellular distribution of PKA,” Experimental Cell Research, vol. 315, no. 7, pp. 1247–1259, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. I. H. Gelman, K. Lee, E. Tombler, R. Gordon, and X. Lin, “Control of cytoskeletal architecture by the src-suppressed C kinase substrate, SSeCKS,” Cell Motility and Cytoskeleton, vol. 41, pp. 1–17, 1998. View at Publisher · View at Google Scholar
  26. S. Akakura, R. Bouchard, W. Bshara, C. Morrison, and I. H. Gelman, “Carcinogen-induced squamous papillomas and oncogenic progression in the absence of the SSeCKS/AKAP12 metastasis suppressor correlate with FAK upregulation,” International Journal of Cancer, vol. 129, pp. 2025–2031, 2011. View at Google Scholar
  27. S. Akakura, P. Nochajski, L. Gao, P. Sotomayor, S. I. Matsui, and I. H. Gelman, “Rb-dependent cellular senescence, multinucleation and susceptibility to oncogenic transformation through PKC scaffolding by SSeCKS/AKAP12,” Cell Cycle, vol. 9, no. 23, pp. 4656–4665, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. X. Lin, P. J. Nelson, and I. H. Gelman, “SSeCKS, a major protein kinase C substrate with tumor suppressor activity, regulates G1S progression by controlling the expression and cellular compartmentalization of cyclin D,” Molecular and Cellular Biology, vol. 20, no. 19, pp. 7259–7272, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. X. Lin and I. H. Gelman, “Calmodulin and cyclin D anchoring sites on the Src-suppressed C kinase substrate, SSeCKS,” Biochemical and Biophysical Research Communications, vol. 290, no. 5, pp. 1368–1375, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. M. C. Choi, Y. U. Lee, S. H. Kim et al., “A-kinase anchoring protein 12 regulates the completion of cytokinesis,” Biochemical and Biophysical Research Communications, vol. 373, no. 1, pp. 85–89, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. J. R. A. Hutchins, Y. Toyoda, B. Hegemann et al., “Systematic analysis of human protein complexes identifies chromosome segregation proteins,” Science, vol. 328, no. 5978, pp. 593–599, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Kittler, L. Pelletier, A. K. Heninger et al., “Genome-scale RNAi profiling of cell division in human tissue culture cells,” Nature Cell Biology, vol. 9, no. 12, pp. 1401–1412, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Werner and M. Glotzer, “Control of cortical contractility during cytokinesis,” Biochemical Society Transactions, vol. 36, no. 3, pp. 371–377, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. I. H. Gelman and L. Gao, “SSeCKS/Gravin/AKAP12 metastasis suppressor inhibits podosome formation via RhoA- and Cdc42-dependent pathways,” Molecular Cancer Research, vol. 4, no. 3, pp. 151–158, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. A. T. Saurin, J. Durgan, A. J. Cameron, A. Faisal, M. S. Marber, and P. J. Parker, “The regulated assembly of a PKCε complex controls the completion of cytokinesis,” Nature Cell Biology, vol. 10, no. 8, pp. 891–901, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Akakura, C. Huang, P. J. Nelson, B. Foster, and I. H. Gelman, “Loss of the ssecks/gravin/akap12 gene results in prostatic hyperplasia,” Cancer Research, vol. 68, no. 13, pp. 5096–5103, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Collado and M. Serrano, “The power and the promise of oncogene-induced senescence markers,” Nature Reviews Cancer, vol. 6, no. 6, pp. 472–476, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. J. H. Rhim, I. S. Jang, E. J. Yeo, K. Y. Song, and S. C. Park, “Role of protein kinase C-dependent A-kinase anchoring proteins in lysophosphatidic acid-induced cAMP signaling in human diploid fibroblasts,” Aging Cell, vol. 5, no. 6, pp. 451–461, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. C. M. Perou, T. Sørile, M. B. Eisen et al., “Molecular portraits of human breast tumours,” Nature, vol. 406, no. 6797, pp. 747–752, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Rosenwald, A. A. Alizadeh, G. Widhopf et al., “Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia,” Journal of Experimental Medicine, vol. 194, no. 11, pp. 1639–1647, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. P. N. Tonin, T. J. Hudson, F. Rodier et al., “Microarray analysis of gene expression mirrors the biology of an ovarian cancer model,” Oncogene, vol. 20, no. 45, pp. 6617–6626, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. W. Liu, M. Guan, B. Su et al., “Quantitative assessment of AKAP12 promoter methylation in colorectal cancer using methylation-sensitive high resolution melting: correlation with dukes' stage,” Cancer Biology and Therapy, vol. 9, no. 11, pp. 862–871, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Hayashi, S. Nomoto, M. Kanda et al., “Identification of the A kinase anchoring protein 12 (AKAP12) gene as a candidate tumor suppressor of hepatocellular carcinoma,” Journal of Surgical Oncology, vol. 105, pp. 381–386, 2012. View at Publisher · View at Google Scholar
  44. G. W. McLean, K. Brown, M. I. Arbuckle et al., “Decreased focal adhesion kinase suppresses papilloma formation during experimental mouse skin carcinogenesis,” Cancer Research, vol. 61, no. 23, pp. 8385–8389, 2001. View at Google Scholar · View at Scopus
  45. H. S. Lee, J. Han, H. J. Bai, and K. W. Kim, “Brain angiogenesis in developmental and pathological processes: regulation, molecular and cellular communication at the neurovascular interface,” FEBS Journal, vol. 276, no. 17, pp. 4622–4635, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. B. Su, Q. Zheng, M. M. Vaughan, Y. Bu, and I. H. Gelman, “SSeCKS metastasis-suppressing activity in MatLyLu prostate cancer cells correlates with vascular endothelial growth factor inhibition,” Cancer Research, vol. 66, no. 11, pp. 5599–5607, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. B. Burnworth, J. Pippin, P. Karna et al., “SSeCKS sequesters cyclin D1 in glomerular parietal epithelial cells and influences proliferative injury in the glomerulus,” Laboratory Investigation, vol. 92, pp. 490–510, 2012. View at Google Scholar
  48. H. Y. Wang, J. Tao, E. Shumay, and C. C. Malbon, “G-protein-coupled receptor-associated A-kinase anchoring proteins: AKAP79 and AKAP250 (gravin),” European Journal of Cell Biology, vol. 85, no. 7, pp. 643–650, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. F. Lin, H. Y. Wang, and C. C. Malbon, “Gravin-mediated formation of signaling complexes in β2-adrenergic receptor desensitization and resensitization,” Journal of Biological Chemistry, vol. 275, no. 25, pp. 19025–19034, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. S. W. Lee, W. J. Kim, Y. K. Choi et al., “SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier,” Nature Medicine, vol. 9, no. 7, pp. 900–906, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. H. B. Kwon, Y. K. Choi, J. J. Lim et al., “AKAP12 regulates vascular integrity in zebrafish,” Experimental Molecular Medicine, vol. 44, pp. 225–235, 2012. View at Publisher · View at Google Scholar